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1 [bookmark: _Toc446002953][bookmark: _Toc446002807][bookmark: _Toc446002654][bookmark: _Toc446001011][bookmark: _Toc446000866][bookmark: _Toc445999044][bookmark: _Toc445996130][bookmark: _Toc445995998][bookmark: _Toc445995868][bookmark: _Toc445995738][bookmark: _Toc445995609][bookmark: _Toc465851446]INTRODUCTION 
The Department of Energy (DOE) launched the Wave Energy Prize (WEPrize) Competition as a mechanism to stimulate the development of new wave energy converter devices that have the prospect of becoming commercially competitive in the long run.  In the Final stage of the competition, nine teams will test their 1/20th scale devices at the US Naval Surface Warfare Center Carderock Division (NSWCCD) Maneuvering and Seakeeping Basin (MASK) in West Bethesda, MD.   Each contestant will prepare their device for one week and then test their device for one week at the MASK basin in Summer/Fall 2016.  This testing program will measure the performance of each device tested to determine the WEPrize winners.
The purposes of the Team Test Plan are to:
· Plan and document the 1/20th scale device testing at the Carderock MASK basin;
· Document the test article, setup and methodology, sensor and instrumentation, mooring, electronics, wiring, and data flow and quality assurance;
· Communicate the testing between the Finalist team, Carderock, Data Analyst (DA) and the Prize Administration Team (PAT);
· Facilitate reviews that will help to ensure all aspects (risk, safety, testing procedures, etc.) have been properly considered;
· Provide a systematic guide to setting up, executing and decommissioning the experiment.
The team test plan is a WEPrize required document and will be owned/managed by the Carderock Test Leads and DAs, and is intended to be a “living document” that will evolve continuously prior to the MASK basin testing.
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The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the WEPrize winners [1].
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All testing will be conducted in the Maneuvering and Seakeeping basin (MASK) at Carderock Division, Naval Surface Warfare Center located in Bethesda, Maryland.  The MASK is an indoor basin having an overall length of 360 feet, a width of 240 feet and a depth of 20 feet except for a 35-foot deep trench that is 50 feet wide and parallel to the long side of the basin.  The basin is spanned by a 376-foot bridge supported on a rail system that permits the bridge to transverse to the center of the basin width as well as to rotate up to 45 degree from the centerline as seen in Figure 1.  Figure 1 does not include the physical update of this wavemaker system, but a drawing of the new paddle layout can be seen in Figure 2.  The MASK Carriage is suspended beneath the bridge and can travel along the rails by the rollers and drive system.  There is an arresting gear to prevent the carriage from hitting the end stops and this limits the travel along the bridge.  The carriage has 6’ x 10’ moon bay in the center which allows for models and instrumentation to be mounted.  A photo of the carriage is shown in Figure 3.  Along the two ends opposite of the wavemakers are beaches with a 12 degree slope. The beaches are constructed of 7 layers of concrete sections and are effective in mitigating the mass flux of water back into the tank during wave generation.  The hydrodynamic properties of the beaches can be found in [2].
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[bookmark: _Ref383053130][bookmark: _Toc442202044][bookmark: _Toc425777632][bookmark: _Toc392854587][bookmark: _Toc383074400][bookmark: _Toc465851434]Figure 1. General Schematic of bridge and MASK basin.
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[bookmark: _Ref429000481][bookmark: _Toc442202046][bookmark: _Toc465851435]Figure 2. General view of new segmented wavemaker in MASK Wavemaking Facility. Paddles are highlighted in red and the control cabinets are highlighted in bright blue. 
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[bookmark: _Ref429000175][bookmark: _Toc442202045][bookmark: _Toc465851436]Figure 3. MASK carriage shown below the bridge at the center of the bridge.
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The new wavemaker is rendered with respect to its general install position in Figure 2.  The wavemaker system consists of 216 paddles.  There are 108 paddles along the North edge of the basin, 60 paddles in a ninety degree arc, and 48 paddles along the West edge of the basin.  The paddles are grouped in sets of eight paddles per control cabinet.  The 27 control cabinets are then joined via three marshaling cabinets, and ultimately the marshaling cabinets are connected to the main control station at the second floor of the MASK control room.  The cabinets and control room are generally illustrated in Figure 2.
A more detailed view of the wavemaker paddles is provided in Figure 4.  The paddles have a hinge depth of 2.5 m (8.2 ft) and a pitch (centerline to centerline spacing) of 0.658 m (25.9 in.).  The wavemaker system is a dry back, force feedback system.  The paddles are moved using hydrostatic compensation with air tanks and bellows and with sectors attached to the wavemakers with an A-frame type structure.  The sector has a timing belt attached which runs on the topside of the sector.  The timing belt runs through a pulley box powered with an encoder controlled motor.  The motor is used to control the real-time quick motions of the paddle.  The force feedback of the paddle is provided via a force transducer mounted at the bellows and sector interface to the paddle.
The wavemaker is controlled via runtime software located on the main control computer using Edinburgh Designs Limited (EDL) software. The software allows entering specific regular wave conditions or it can be programmed to generate irregular seas via the input of “experiments files”. 
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[bookmark: _Ref429000536][bookmark: _Toc442202047][bookmark: _Toc465851437]Figure 4. General wavemaker characteristics and design
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With respect to the MASK basin, the reference frame is illustrated in Figure 5.  Its operational origin is located at the interior intersection of the northwest and northeast walls and vertically at the nominal 20 ft. water level.  The positive x-axis is aligned along the shorter northwest wall and the positive y-axis along the longer northeast wall.  Waves propagating parallel with the x-axis (toward the long beach) are defined as having a mean wave direction, β₀, of zero degrees and waves propagating parallel with the y-axis as 90 degrees.  This convention defines the wave direction as the direction the waves are traveling toward.
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[bookmark: _Ref429000556][bookmark: _Toc442202048][bookmark: _Toc465851438]Figure 5. MASK reference orientation, note that the orientation here is different than that in Figures 1 and 3. 
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AquaHarmonics’ wave energy device (the “device”) is a point absorber comprised of a 120 degree symmetrical cone shape for the bottom and top portion of the hull with a cylinder shaped section connecting the top and bottom portions of the hull.  The PTO is comprised of a large diameter, narrow width sheave fixed to a shaft and supported by bearings in a sealed compartment which is integrated into the lower portion of the hull. The main PTO mooring line is connected at one termination to a load cell which is connected to a mooring anchor at the bottom of the test tank, enters the device through an opening at the bottom center of the hull and then passes through a roller fairlead assembly mounted at the base of the sealed PTO compartment. It then wraps around the PTO sheave a number of times, and finally terminates at a connection point inside the PTO sheave.

[bookmark: _Toc465851453]Power Take-Off description

Per Figure 6. PTO layout and description, Figure 7. PTO Instrumentation, and Figure 8. PTO channel list/power generated and consumed, one end of the PTO shaft has two sprockets installed on it. The first sprocket is connected by a drive chain to a permanent magnet, brushless 3 phase DC gear motor which acts as the model’s generator.  The second sprocket is connected by a chain drive to a shaft that has a second sprocket on it that is connected to a return spring that provides the minimum necessary return force and stored energy to reel in the main PTO line. This increases device efficiency over utilizing only the device PTO generators for return of the device, as well as making zero velocity point detection easier and simpler for the control system. The gearmotor’s mounting face is bolted to one side of a static torque load cell, and the other side of the torque load cell is connected to a fixed bulkhead of the device hull. The shaft driving the gearmotor has a rotary encoder mounted to it, which measures position, velocity and acceleration of the device PTO as seen at the interface of the gearmotor.

The device is free-floating in 6 degrees of freedom and generates power primarily in the heave, DOF, with some power generated in the surge and sway components of the device motion for 3 DOF power production. The device is designed to produce power only on the up-swell of the wave by generating high tensile forces in the main PTO mooring line between the buoyant hull of the device and the mooring anchor, which rotates the PTO sheave in its bearings and produces high torque, low RPM power at the gearmotor, as well as storing energy in the return spring system. On the down-swell of the wave the device operates in a PTO "motoring" condition by a combination of releasing energy stored in the return spring system and powering the gearmotor in the opposite direction to return the device to its home position at the bottom of the wave by reeling in the main PTO mooring line. The power production cycle is then restarted. The torque profile of the electric return force is modified depending on the wave period and amplitude.

The power leads of the generators are connected to a solid state control system. The control system consists of a microcomputer running proprietary code that switches the gearmotor between power generating and motoring /winching modes by monitoring motor current and velocity. 
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[bookmark: _Ref453666682][bookmark: _Toc465851439]Figure 6. PTO layout and description
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[bookmark: _Toc465851440][bookmark: _Ref453666821]Figure 7. PTO Instrumentation 
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[bookmark: _Ref465780906][bookmark: _Toc465851441]Figure 8. PTO channel list/power generated and consumed
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Full Scale Device Estimated MOI:
[image: ]
1/20th Scale Model Estimated MOI:
[image: ]

Table 1. Device Dimensions shows Device Properties, Full and 1/20th scales using Froude scaling and critical dimensions are shown in Table 2. Critical Dimensions
[image: ]
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	Measurement
	Design Value
	Measured Value
	Description
	Verified at Carderock
	Measured by Team

	Dimensions (m)
	length overall (in direction of wave travel)
	.75
	
	
	
	

	
	width overall (perpendicular to direction of wave travel)
	0.75
	
	
	
	

	
	height overall 
	0.547
	
	Hull height, measured from under tracking plate to top of roller fairlead
	
	

	(m)
	Top Cone Height 
	.195
	
	Measured from bottom of tracking plate to bottom of aluminum seal ring
	
	

	(m)
	Cylindrical Section Height
	.15
	
	From center of fillet to center of fillet
	
	

	(m)
	Bottom Cone Height
	.195
	
	Measured from top of ballast plate to center of fillet of cylindrical section
	
	

	(m)
	Fairlead /ballast Height
	.073
	
	Measured from bottom hull to bottom of roller
	
	

	
	
	

	Mass (kg)
	23.62
	23.62
	
	
	

	Center of gravity (m)    -
	-.125
	-.12
	Measured from center of cylindrical hull section

	
	

	Center of buoyancy (m)
	-.148
	-.137
	Measured from center of cylindrical hull section

	
	

	Moment of inertia
	Pitch (kgm2)
	0.778
	0.783
	
	
	

	
	roll (kgm2)
	0.744
	0.767
	
	
	

	
	yaw (kgm2)
	0.620
	0.642
	
	
	

	Draft (static waterline) (m)
	-.1
	-0.92
	
	
	

	Wetted surface area  (m2)
	0.908
	
	Simplified Geometry area from full scale device
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In regards to scaling laws for our device, ideally the Froude number and the Reynolds number would be used. For the purposes of the wave energy prize, the net influence of viscous forces on body motions is considered to be negligible and therefore the Froude scaling is assumed to be satisfied.
Drag affects the body of the device, therefore reducing amount of damping that can be applied at the PTO. This affects the total power that can be absorbed by the PTO, but does not apply directly to the PTO, and therefore there should be no other scaling laws required.
This conclusion can be drawn per the document by SuperGen Marine, “Guidance for the experimental tank testing of wave energy converters” SuperGen Marine–Gregory Payne, The University of Edinburgh Version :01b; 12/22/2008
“During the interaction between waves and solid bodies, the effects of viscosity are generally felt in the boundary layer, in the close vicinity of the water-body interface. In the rest of the fluid volume, viscous effects are generally negligible. The relative influence of viscous forces will thus be greater for complex WEC geometries that have large wetted-surface areas in relation to their immersed volumes compared with more compact WEC shapes that have lower ratios of wetted-area to volume. For many tank-scale WEC’s, the net influence of viscous forces on body motions is small and Froude scaling can be assumed to be satisfied. The assumption that the ratio of inertial forces to gravitational forces is the same at model-and at full-scale generally leads to conservative predictions of full-scale device behavior.”
Since the AquaHarmonics device is a compact device that has a low ratio of wetted area to volume, as stated above this should lead to conservative predictions of full scale behavior. Below is a table describing the physical properties of the device, and how it scales at a 1/20th model scale. General Froude scaling values for the 1/20th scale device are shown in  Table 3. General Froude Scaling
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N/A.
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The control strategy utilized was the control of the instantaneous torque produced by the electric machine coupled to the PTO. By applying torque in a direction opposing the PTO motion, power is extracted from the system. By applying torque in the same direction as the PTO motion, power is added to the system. The goal of the control strategy was to maximize net power extracted from any wave condition. This is accomplished by constant precise control of the direction and magnitude of the torque applied at the PTO. 

Since the device can be simplified to a mass damped spring system, by changing the mass, damping and spring constants, the device’s natural, or harmonic frequency can be changed. The device’s natural frequency given its compact size and relatively low mass mean it has a higher frequency relative to that of the majority of ocean waves. 

Additional mass can lower the device natural frequency, but this is undesirable in the design of a low cost point absorber. Adding additional positive spring at the PTO acts like adding springs in parallel, the additional spring at the PTO and the device buoyant spring between the ocean surface and seafloor. This increases the total spring constant and increases the natural frequency, which also does not help the problem. However, having a small amount of mechanical spring in the PTO can increase device efficiency by acting as necessary mechanical energy storage for reeling in of the PTO mooring line.

In the AquaHarmonic’s device, by controlling the torque of the DC gearmotor in such a way that it acts like a spring and a damper, negative spring can be added in series to the device buoyant spring, which effectively reduces the system total spring and reduces the device natural frequency to that seen in common ocean waves. Damping is then added to the torque profile that is optimized to the sea state. This method effectively increases device efficiency over the same device with damping only torque control.

There will be no physical or structural adaptive changes made during operation of the device in all tested conditions. All changes made in response to varying wave conditions are internal to the control software. Energy efforts will be calculated by continuous and instantaneous measurements of PTO position (used to derive PTO velocity) and PTO torque. Maintaining sign conventions (eg positive and negative) on both torque and velocity measurements will ensure constant measurement of both the magnitude of power, and whether it is being added or removed from the system. Net power is calculated by summation of the instantaneous power. 
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[bookmark: _Toc465851466]Test matrix 
The incident wave conditions for the 1/20th scale experiments at NSWC Carderock’s MASK are shown in Table 4.  Carderock will perform wave environment calibration in Summer 2016. The result of this calibration is shown in Appendix E.
[bookmark: _Ref441046446][bookmark: _Toc465851422]Table 4. Test waves
	Type
	Number
	TP [s]
	HS [m]
	γ (gamma)
	Direction
	Spreading

	IWS (JONSWAP)
	1
	1.63
	0.117
	1.0
	10.0
	∞

	
	2
	2.20
	0.132
	1.0
	0.0
	∞

	
	3
	2.58
	0.268
	1.0
	-70.0
	∞

	
	4
	2.84
	0.103
	1.0
	-10.0
	∞

	
	5
	3.41
	0.292
	1.0
	0.0
	∞

	
	6
	3.69
	0.163
	1.0
	0.0
	∞

	LIWS (JONSWAP)
	7
	3.11
	0.395
	3.3
	-30.0
	3.0

	
	8
	2.50
	0.460
	3.3
	-70.0
	7.0

	RWS                  (4-parameter JONSWAP)
	9
	3.22
	0.076
	2.0
	-70.0
	7.0

	
	
	1.61
	0.108
	2.0
	0
	10

	
	10
	3.32
	0.079
	2.0
	-70.0
	7.0

	
	
	1.93
	0.065
	2.0
	-10
	10


[bookmark: _Toc465851467]Test schedule
[bookmark: _Ref445998187][bookmark: _Toc465851423]Table 5. Testing schedule
	Date/Time
	Event

	Monday
	MASK installation and work-in

	7:00
	Morning Huddle

	7:10
	Contestants will be moving their device from the assembly area to the installation area,  installation and verifying operation

	Tuesday
	Continued installation and work-in

	7:00
	Morning Huddle

	7:10
	Contestants continue moving their device from the assembly area to the installation area,  installation and verifying operation

	2:00
	Readiness verification

	3:00
	Baseline 1 run
	IWS Wave 2

	4:00
	Baseline 2 run
	IWS Wave 5

	4:20
	Contestants pack up for evening

	Wednesday
	Full Test Day

	7:00
	Morning Huddle

	7:15
	Contestants set up for testing and perform pre-test checks

	8:00
	Run 1 (Baseline 1)
	IWS Wave 2

	9:00
	Run 2 (Baseline 2)
	IWS Wave 5

	10:00
	Run 3
	IWS Wave 1

	11:00
	Run 4
	IWS Wave 3

	12:00
	Lunch

	1:00
	Check Run 1  (Baseline 1)
	IWS Wave 2

	2:00
	Run 5
	IWS Wave 4

	3:00
	Run 6
	IWS Wave 6

	4:00
	Check Run 2  (Baseline 2)
	IWS Wave 5

	5:00
	Contestants pack up for evening (also a 30 minute buffer)

	Thursday
	 

	7:00
	Morning Huddle

	7:15
	Contestants set up for testing and perform pre-test checks

	8:00
	Check Run 3  (Baseline 1)
	IWS Wave 2

	9:00
	Run 7
	RWS Wave 1

	10:00
	Run 8
	RWS Wave 2

	11:00
	Run 9
	LIWS Wave 1

	12:00
	Lunch

	1:00
	Run 10
	LIWS Wave 1

	2:00
	Check Run 4  (Baseline 2)
	IWS Wave 5

	3:00
	Backup Run 1/ Contestant Testing
	TBD

	4:00
	Backup Run 2/ Contestant Testing
	TBD

	5:00
	Perform final daily data QA checks and test reporting (may start earlier if testing permits)

	Friday
	 
	 

	7:00
	Morning Huddle

	7:15
	Contestants set up for testing and perform pre-test checks

	8:00
	Backup Run 3/ Contestant Testing
	TBD

	9:00
	Backup Run 4/ Contestant Testing
	TBD

	10:00
	Backup Run 5/ Contestant Testing
	TBD

	11:00
	Backup Run 6/ Contestant Testing
	TBD

	12:00
	Lunch

	1:00
	Contestants pack up for shipping




Post Test Notes for Section 5.2
The test schedule was modified and all test waves were run. Please see the test results spreadsheet for a list of waves that were run and the order for which they were run.
[bookmark: _Toc465851389][bookmark: _Toc465851468][bookmark: _Toc465851469]Definition of Device Setup
*See Appendix A for drawings
The device setup consists of the AquaHarmonics WED “The Device”, 4 catenary mooring lines and individual load cells, the main PTO mooring line and load cell, the external control system power supply (battery) and control board, the umbilical cord consisting of the torque load cell channel and power, the rotary encoder channels and power, and PTO gearmotor power, as well as the Carderock facility Data Acquisition system (Data Aq).

Installation of the device consists of the following procedures:

· Device Inspections
· Unpack device from shipping crate and place on dolly
· Setup outdoor storage shelter
· Inspect for damage
· Bench Test PTO
· Check ballasted weight
· Check CG
· Check MOI
· Check Waterline
· Check sensor calibration/operation

· Device Installation into basin
· Disconnect return spring connection from return spring sprocket
· Setup catenary and main PTO mooring points in basin floor per figures 9-12
· Place device in tank by hand and float to mooring position with pontoon boat
· Install main PTO mooring line to main PTO load cell
· Tension main PTO mooring line come-along
· Install return spring and preload spring
· Verify PTO mooring line preload on load cell readout
· Adjust return spring preload as required 
· Measure catenary mooring lines for symmetry
· Slack come-alongs and install catenary mooring lines to catenary load cells
· Tension catenary mooring line come-alongs
· Verify catenary mooring line preload on load cell readout
· Adjust return spring preload as required
· Position AquaHarmonics Control Center/Work Bench on carriage above mooring position in tank
· Install control board and power supply (battery) cables to device 
· Connect device umbilical to Carderock dataq
· Connect analog output from Carderock sensors to AquaHarmonics DataAQ
· Access device from dinghy in water, or access platform wearing required PPE
· With device in water, remove device lid, support from rope tied to carriage
· Move device in heave motion and check operation of all components
· Adjust final spring preload as required.
· Install device lid to indexed location.
[bookmark: _Toc465851470]Detail of Individual Test Run:
An individual test run consists of the following procedures:
1. Check device sensors output
2. Check PTO gearmotor operation and communication with control system software
3. Confirm main PTO preload on load cell
4. Check input of wave gauges
5. Confirm control system power supply voltage level (52V nominal, 58V max)
6. Run Wave Maker Preliminary Waves
7. Input control variables into control software for wave case to be tested
8. Monitor channels and device for proper function
9. Start WEP irregular wave run
10. Monitor channels and device operation during run
11. Confirm data acquisition data is recording
12. Allow waves to settle
13. Repeat for next wave set. Adjust device spring preload if required
[bookmark: h.xvjthj4o3hri]


6 [bookmark: _Toc465851471]Experimental Set Up and Methods
[bookmark: _Toc453606516][bookmark: _Toc453606517][bookmark: _Toc453606518][bookmark: _Toc453606519][bookmark: _Toc453606520][bookmark: _Toc465851472]Mooring
The device mooring system consists of 4 elastic catenary mooring lines and 1 centrally located PTO mooring line. The device instrumentation and control system umbilical cord exits out of the rear top cone section of the device hull.
[image: ]
Figure 9. Top View of Mooring Layout

[image: ]
Figure 10. Front View of Mooring Layout
[image: ]
Figure11. Left Side View of Mooring Layout
[image: ]
Figure 12. Isometric View of Mooring Layout
[bookmark: _Toc465851394][bookmark: _Toc465851473][bookmark: _Toc446003063][bookmark: _Toc446002917][bookmark: _Toc446002764][bookmark: _Toc446001121][bookmark: _Toc446000976][bookmark: _Toc446003062][bookmark: _Toc446002916][bookmark: _Toc446002763][bookmark: _Toc446001120][bookmark: _Toc446000975][bookmark: _Toc446003061][bookmark: _Toc446002915][bookmark: _Toc446002762][bookmark: _Toc446001119][bookmark: _Toc446000974][bookmark: _Toc465851474]Instrumentation
· *See Appendix A for drawings

The Team Provided sensors include the following:

· Dynamic Side of Power:  1 each Futek TFF400 200 in*lb torque load cell, measures PTO GearMotor torque, calibrated with 25 ft long extension cord and Futek IAA200 amplifier

· Kinematic Side of Power: 1 each CUI AMT102V Rotary Encoder, Measures PTO GearMotor Shaft Speed
· 
Per Figure 6. PTO layout and description, Figure 7. PTO Instrumentation, and Figure 8. PTO Figure 7. PTO Instrumentation, one end of the PTO shaft has two sprockets installed on it. The first sprocket is connected by a drive chain to a permanent magnet, brushless 3 phase DC gear motor which acts as the model’s generator.  The second sprocket is connected by a chain drive to a shaft that has a second sprocket on it that is connected to a return spring that provides the minimum necessary return force and stored energy to reel in the main PTO line. The gearmotor’s mounting face is bolted to one side of a static torque load cell, and the other side of the torque load cell is connected to a fixed bulkhead of the device hull. The shaft driving the gearmotor has a rotary encoder mounted to it, which measures position, velocity and acceleration of the device PTO as seen at the interface of the gearmotor. The product of torque and velocity at the PTO gives the device consumed or generated power, depending on PTO velocity vs. PTO torque.

The sensor’s measurement range is acceptable for use at Carderock, based on preliminary testing of the waves types used at the 1/20th scale in the Wave Energy Prize at the O.H. Hinsdale Wave Laboratory at Oregon State University.  The torque load cell measurement range has been selected to be just above the rated safe maximum torque rating of the DC gearmotor, and the rotary encoder measurement range is within the range of velocities that the PTO and DC gearmotor will see in operation. 

In the largest waves to be tested at Carderock, there is a possibility of exceeding the calibrated range of the torque load cell, but within the maximum safe overload of the torque load cell. The possibility of this occurrence is estimated at less than 2-3 times in a 50 minute test.

Derived channels will be the following:
· Equivalent linear PTO velocity from final gear ratio of PTO GearMotor and PTO Sheave
· PTO Rotary Encoder Velocity/Position
· PTO force from final gear ratio of PTO GearMotor, PTO Sheave and torque load cell
· PTO Power, consumed, generated and net 
· PTO Torque
· PTO Linear Damping
· PTO rotary damping
· Wave Gauge
· Wave Gauge FFT

Carderock Supplied Sensors Include:
· Main PTO load cell, 1 each
· Catenary Mooring line load cells, 4 each
· Body optical tracking system

High G/impact event monitoring:
· High G or Impact events can be monitored with the main PTO mooring load cell or PTO torque load cell, however high impact events are not anticipated for the waves to be tested since the device PTO does not have a limit on stroke. This is due to the design of the PTO having more available stroke than the device will see in even the largest waves tested at Carderock.

Spot Checks:
The device sensors will be spot checked prior to testing. The torque load cell will be checked by installing a t-shaped frame over the PTO gearmotor adaptor box and placing calibrated weights to the “T” arms at measured distances to provide known torque values in the clockwise and counterclockwise directions.  The rotary encoder functionality will be checked by installing the encoder leads to the Carderock Data AQ and rotating the PTO a known number of turns, and comparing the encoder count to the actual PTO change in position, both in clockwise and counterclockwise directions.

Post Test Notes for Section 6.2
During testing, the PTO motor failed and replaced with a spare motor.

[bookmark: _Toc446003066][bookmark: _Toc446002920][bookmark: _Toc446002767][bookmark: _Toc446001125][bookmark: _Toc446000980][bookmark: _Toc446003065][bookmark: _Toc446002919][bookmark: _Toc446002766][bookmark: _Toc446001124][bookmark: _Toc446000979]

7 [bookmark: _Toc446003068][bookmark: _Toc446002922][bookmark: _Toc446002769][bookmark: _Toc446001127][bookmark: _Toc446000982][bookmark: _Toc465851475]Data Processing and Analysis
[bookmark: _Toc465851476]Data quality assurance and on-site processing
Data collection will start 2 minutes before waves are started and continue for at least 2 minutes once wave generation stops. This will ensure that the data captures the initial conditions and ramp-up/down.
“Raw” data from the Natural Point motion tracking and from the National Instruments (NI) measured power/loads/other are collected on two different systems and stored in separate text files. The motion tracking data are stored in a CSV file while the data from NI DAS are stored in a tab delimited text file
[bookmark: _Toc465851398][bookmark: _Toc465851477][bookmark: _Toc465851478]Data analysis
The data processing and analysis is into two parts: 1) data quality assurance (QA) that will ensure that quality, consistent and error free data are used in data analyses and 2) data analysis to calculate the performance metrics used in judging. 
The data flow and processing steps are shown in Figure 9. The DA responsibilities are outlined in Error! Reference source not found. and Table 4.
Individual Test Data Flow, Display and Reporting
Post Test Analysis




Wave Sensors
Motion Tracking System
Mooring Loads Sensors
WEC PTO Sensors
Carderock DAS



Write to optical Disc
Signal Conditioning
Unit Conversion
Data Formatting
DAS Real Time Data Display
Test-by-Test Data Analysis




Signal  Conditioning and Unit Conversion
Initial QA checks
Initial Processing
Secondary QA checks
Test Report
Contestant Controller
Processing and analysis
DA Test Data Display

[bookmark: _Ref450208127][bookmark: _Toc465851442]Figure 9. Data flow and processing steps
 The objective of the data quality check is to detect and eliminate as many significant errors from the data as soon as possible, and to come to an overall assessment of the data quality.  The data QA shall be performed at three points during testing: 1) visually in “real time” during each test while data are collected, 2) during the interval after testing when the wave basin in settling and 3) when data are analyzed. It is critical to identify any data issues as soon as possible so corrective action can be taken and a test rerun if necessary.
The DAs and Carderock will decide if a test needs to be rerun if they have determined the data is of sufficiently poor quality in terms of:
· The wave field did not sufficiently match the specified spectrum
· There were errors in the measurements due to such issues as sensor failure, connector failure, too high noise, etc.
· Failure or issues with the WEC 
· Fault with DAS 
[bookmark: _Toc465851479]“Real Time” Data QA
To ensure data quality, to prevent re-running multiple tests, and to halt tests early, all channels shall be visually monitored during testing to provide a basic level of data quality assurance and to verify that all instruments and the data acquisition system are functioning properly. If bad data are detected, the test lead should be immediately notified, who will then decide what action needs to be taken. During each test the following QA should be performed:
· Operation and performance of the DAS should be monitored to verify that it has not locked up or faulted – make sure the DAS runs throughout the test by monitoring CPU load and data updates 
· Visual inspection of the data being displayed by the DAS, as they are gathered – the Carderock DAS will plot specific incoming data channels as they are acquired.
[bookmark: _Toc465851480]Settling Interval and Time between Test Data QA
After each test, while the basin settles and while the next test is set up (~20 min total), a more detailed data QA shall be performed to identify any issues before the next test starts. The DA will do their best to perform this task between runs, but if this is not possible, the QA will be completed during the subsequent run. If issues are detected with the data, these will be brought up to the test lead. The following tasks should be performed:
· Operation and performance of the DAS should be monitored to verify that it has not locked up or faulted
· Time series for each data channels should be plotted and inspected
· Data shall be processed to perform higher-level data QA
· Spectra should be calculated for waves, power and loads and plotted and inspected
· Wave spectra should be compared with baseline wave spectra 
· Periodic comparisons with baseline runs (as possible)
· Visual inspection of all wires, connectors and sensors should be performed (as possible)
· Visual inspection of device should be performed (as possible)

The first six bullets will be performed using pre-written scripts that interface with the Carderock DAS storage. These scripts will load the data, perform some processing, create figures for review, and identify any data of concern. 

	
	
	Real Time via observation
	Settling Interval
	Post Test

	
	
	
	
	

	DAS malfunction
	Check for data acquisition failure or malfunctions
	X
	X
	

	Sensor malfunction
	Check for sensor failure or malfunctions
	X
	X
	

	Time difference
	Check the time difference between each measurement for consistency and against specifications and check for strange variations in time
	
	X
	X

	Error values/substitutes
	Identify error values/substitutes (i.e. “999” or “NaN”)
	X
	X
	X

	Constant value
	Repetitions of consecutive data with the same value (repeating standard deviations or offset).
	
	X
	X

	Completeness
	Check whether the number of records and their sequence is correction (identification of gaps, check for repetition)
	
	
	X

	Range /threshold 
	Check whether the data of each sensor lie within the measurement range of that sensor.
	
	X
	X

	Measurement continuity
	Compare the rate of change of a signal to expected/seasonally accepted values and between similar measurements that are collocated in close proximity
	
	X
	X

	Measurement Consistency
	comparison between statistics, such as the ratio of wave height to power
	
	
	X

	Near-by Comparison
	Comparison with  similar/duplicate  measurements that are collocated in close proximity
	
	
	X

	Spectral spikes
	Spikes in the spectral data
	
	X
	X

	Trends and inconsistencies
	Identify trends in data such as large drift in sensor output or inconstancies in sensor output for similar input 
	
	
	X
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Data are transferred from the Caderock systems (Natural Point and the NI DAS) to the DA computers via an optical media, likely a re-writable DVD or Bluray. Each disc will be labeled with the data, the team name and the included runs. Separate discs will be used for each team.
Data will be transferred to the DA computer and stored in separate directories for each team. As data are processed, the processed data, along with the processing algorithms will be stored on the DA computers. The “raw” data files SHALL not be altered by the DAs – if modifications are needed, a new file shall be created to do this, thus, preserving the original “raw” data file.
At lunch and at the end of each day, all data will be backed up to two separate hard drives and to the spare DA computer. One drive will remain at Carderock and the other will be stored at a separate location during evenings and weekends.
When DAs are using computers other than the DA computers, all analysis and algorithms will be backed up to two different jump drives at least once a day. Once analysis is complete, the DA will send one drive to the lead DA who will archive the raw and processed data on NREL’s secure data server. 
The teams will not be provided with any data from Carderock or the DAs – the PAT will facilitate data transfer to the teams.
The discs, DA computer, the redundant back-up drives, and storage on NREL’s secure server  provide a high level of storage redundancy.
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[bookmark: _Ref445998114][bookmark: _Toc465851483]Appendix A: Device electrical and mechanical drawings 
Device 1/20th scale drawings:
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Device full scale reference drawings:
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[bookmark: _Toc465851484]Device PTO Gear Motor DataSheet:
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[bookmark: _Toc465851485]Appendix B: PTO calibration results
· PTO characterization for the AquaHarmonic’s 1/20th scale device is not required per the Wave Energy Prize since kinematic and dynamic components of power are measured directly. 
· Below is a chart summarizing sign conventions for torque and velocity to determine power consumed, power generated and net power.[image: ]

[bookmark: _Ref445998143][bookmark: _Toc465851486]Appendix C: Device Froude scaling 
· 
	Quantity
	Froude
Scaling
	Reynolds
Scaling

	wave height and length
wave period and time
wave frequency
power density
	s
s0.5
s-0.5
s2.5
	s
s2
s-2
s-2

	linear displacement
angular displacement
	s
1
	s
1

	linear velocity
angular velocity
	s0.5
s-0.5
	s-1
s-2

	linear acceleration
angular acceleration
	1
s-1
	s-3
s-4

	mass
force
torque
pressure
power
	s3
s3
s4
s
s3.5
	s3
1
s
s-2
s-1

	linear stiffness
angular stiffness
	s2
s4
	

	linear damping
angular damping
	s2.5
s4.5
	



Froude scaling R(Load), where lower case r is model scale, and capital R is full scale:
Dynamic (force) to kinematic (velocity):

Dynamic (torque) to kinematic (angular velocity):

Dynamic (pressure) to kinematic (volumetric flow):



[bookmark: _Ref445998153][bookmark: _Ref445999478][bookmark: _Toc465851487]Appendix D: Detailed description of control strategy

The control strategy utilized will be the control of the instantaneous torque produced by the electric machine coupled to the PTO. By applying torque in a direction opposing the PTO motion, power is extracted from the system. By applying torque in the same direction as the PTO motion, power is added to the system. The goal of the control strategy will be to maximize net power extracted from any wave condition. This is accomplished by constant precise control of the direction and magnitude of the torque applied at the PTO. 
· The direction and magnitude of torque to apply is affected by both the significant wave height and fundamental frequency of the present wave state.
· This is calculated in real time from the <NAME OF SIGNAL> provided by the test facility.
· The direction and magnitude of torque is calculated to achieve two goals:
· Provide an optimal damping to maximize extracted power. With too low of a damping there will be greater velocities but with a reduced torque. Too large of a damping will decrease velocity and produce large torques. The ideal damping value for a given sea state will be determined through both numerical analysis as well as experimentally.
· Modify the fundamental frequency of the system to match the frequency of the  ncoming waves, as it has been shown that this condition leads to overall higher system velocity and therefore higher power extracted. As with damping, the specific constants associated with this will be determined through a combination of numerical analysis and experimental testing for a range of wave conditions. 


AquaHarmonics Control System Variables and Description 
Control System Variables:
-Low Position Limit (gMotor_lim_min)
-High Position Limit (gMotor_lim_max)
-Damping coefficient (gMotor_damp_const_neg)
-Spring coefficient (gMotor_spring_const)
-Home position (gMotor_home_pos)
Note: Names in parenthesis are the names of there variables in sourcecode. 

Control System Description:
The core of our control system is a Torque Controller for a DC machine. The torque controller has been tuned to have a fast and accurate response time, so that it can create any commanded torque essentially instantly. The torque command sent to the motor is derived from the parameter listed above, as well as inputs from device sensors. From the point of view of the DC machine, the device can move in 2 directions, either towards the mooring connection/seafloor, or away from it. 
The following terms are summed together
  1) Damping coefficient multiplied by the motor's rotational velocity, only when the device is moving away from the seafloor, otherwise this term is 0. 
  2) Spring coefficient multiplied by the difference of the motor's current angular position and the 'home position' variable
The following constraints are applied before sending the command to the torque controller
 1) The torque applied must always be in the direction that will create tension on the mooring line. If the calculations above produces a torque value that would put the mooring line in compression, it saturates at a value of 0 (and the mechanical spring will be keeping the line in slight tension
  2) If the position exceeds the 'Low Position Limit', which means the distance between the device and the seafloor has exceeded the maximum limit, such as in a very large sea state, then the torque command will be overwritten with a static 'damping only' value.
3) If the position exceeds the 'High Position Limit', which means the mooring line is nearly fully wound around the drum and the device is as close to the seafloor as it should be in normal operation, then 0 torque will be applied.
The section of code implementing the control functionality and using the variables can be found at lines 906-972 of sw/solutions/instaspin_motion/src/proj_lab12b.c
Additionally, the motor controller also contains code to update the variables through a serial connection. The file drv8301.py demonstrates how the controller variables can be updated from a PC connected to the controller through a serial connection on COM4. drv8301.m is a matlab class file that uses drv8301.py to allow Matlab scripts to update control parameters.
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	Instructions
	 
	 
	 
	 
	 
	 
	 

	Data File:
	 
	The name of the data file where the data resides 
	 
	 
	 
	 

	Channel Name:
	 
	The name of the data channel in the data file - if data are in a matrix, this is the index (column number) of the data in the matrix 
	 
	 

	Channel Title:
	 
	The common named use to refer to the data in the cannel
	 
	 
	 
	 

	Description:
	 
	Description of what is being measured/recorded
	 
	 
	 
	 

	Unit:
	 
	The unit of the measurement as output by the DAS
	 
	 
	 
	 

	Sensor
	 
	The name of the sensor. Please provide enough information so a reader can identify the specific type of sensor used
	 
	 

	Sample Rate
	 
	The sample rate of the data record 
	 
	 
	 
	 

	Scaling and Conversion Calculations
	Where the measured values will be used
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 
	 

	Data File
	Channel Name
	Channel Title 
	Description
	Unit
	Sensor
	Sample Rate
	Scaling and Conversion Calculations

	 
	 
	Hinge torque
	
	 
	 
	50 Hz
	See data file for conversions used during testing

	 
	 
	Hinge angle
	
	 
	 
	 50 Hz
	

	 
	 
	Mooring Tension 1
	 
	 
	 
	 50 Hz
	

	 
	 
	Mooring Tension 2
	 
	 
	 
	 50 Hz
	

	 
	 
	Wave Height 1
	 
	 
	 
	 
	

	 
	 
	Wave Height 2
	 
	 
	 
	 
	

	
	
	Wave Height 3
	
	
	
	
	

	
	
	Wave Height 4
	
	
	
	
	

	
	
	Wave Height 5
	
	
	
	
	

	
	
	Wave Height 6
	
	
	
	
	

	
	
	Wave Height 7
	
	
	
	
	

	
	
	Wave Height 8
	
	
	
	
	



[bookmark: _Ref446001928][bookmark: _Toc465851489]Appendix F: Checklists for spot checks, software operation, readiness verification, and “real time” data QA

	No
	Reference reading (Nm)
	Torque Load Cell Reading (Nm)
	100 x (Reference Reading - Torque Load Cell Reading)/Reference Reading (%)

	
	
	
	

	1
	 
	 
	 

	2
	 
	 
	 

	3
	 
	 
	 

	4
	 
	 
	 

	5
	 
	 
	 

	6
	 
	 
	 

	7
	 
	 
	 



	No
	Reference reading (rad/s)
	Rotary Encoder Reading (rad/s)
	100 x (Reference Reading - Rotary Encoder Reading)/Reference Reading (%)

	
	
	
	

	1
	 
	 
	 

	2
	 
	 
	 

	3
	 
	 
	 

	4
	 
	 
	 

	5
	 
	 
	 

	6
	 
	 
	 

	7
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Futek Torque Load Cell Data Sheet:

[image: ]

Futek  Amplifier Data Sheet:
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Futek Torque Load Cell NIST Traceable Calibration Sheets:
[image: ]
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CUI AMT102V Rotary Encoder DataSheet:
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The following time series will be plotted for each run and be available for viewing between runs (if time permits)
	Variable
	Definition
	Reference Formula
	Relevant Runs

	Displacement – Inertial Frame
	X is defined relative to the 0 deg wave heading, Z is upward and Y completes the right hand rule
	
	All

	Mooring Tension for each line
	The instantaneous value of the mooring tension for line j
	
	All

	Kinematic Power
	Kinematic Side of Power for PTO j
	
	All

	Dynamic Power
	Dynamic Side of Power for PTO j
	
	All

	Absorbed Power
	Absorbed power for PTO j
	
	All



The following variables will be calculated for each run and be available for viewing between runs (if time permits)
	Variable
	Definition
	Reference Formula
	Relevant Runs

	Wave PSD
	Spectral density of the water surface elevation 
	
	All

	Significant Wave Height
	Measured significant wave height 
	
where

	All

	Omni-Directional Wave Energy Flux
	Omni-Directional Wave Energy Flux 
	


	All

	Wave Energy Period
	Wave Energy Period 
	
	All

	Horizontal Displacement
	Horizontal displacement of the WEC from its at rest position
	
	All

	Mean
	The mean value of the mooring tension for line j
	
	All

	Standard Deviation
	The standard deviation of the mooring tension for each mooring line
	
	All

	Max
	The maximum value of the mooring tension of all mooring lines
	
	All

	Min
	The minimum value of the mooring of all mooring lines
	
	All

	Mean
	The mean value of the kinematic side of power for PTO j
	
	All

	Standard Deviation
	The standard deviation of the kinematic side of power for PTO j
	
	All

	Max
	The maximum value of the kinematic side of power
	
	All

	Min
	The minimum of the kinematic side of power for PTO j
	
	All

	Kinematic spectral density
	Spectral density of the kinematic side of power for PTO j
	
	All

	Mean
	The mean value of the dynamic side of power for PTO j
	
	All

	Standard Deviation
	The standard deviation of the dynamic side of power
	
	All

	Max
	The maximum value of the dynamic side of power
	
	All

	Min
	The minimum of the dynamic side of power
	
	All

	dynamic spectral density
	spectral density of the dynamic side of power, one for each power conversion chain of the WEC
	
	All

	Mean
	The mean value of the power
	
	All
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