Quantifying Scour

Overview:

CFD

- Sea state is treated as the superposition of two monochromatic waves
- Can spatially map shear stress around the device, but cannot directly quantify scour
- Different device geometries can be treated
- Can identify shear stress hotspots due to certain elements of geometry

Empirical Formulations

- Sea state is treated as a uniform monochromatic wave
- Cannot spatially map shear stress around the device, but can quantify a general scour depth
- Simple geometries only
 - Global formulations are derived from studies on cylindrical piles
 - Local formulations not yet addressed here

Deployment observations

- Limited to 2-3 qualitative assessments by divers over the 2 week deployment
- Scour noted to beginning shortly after deployment
- Greatest scour in the latter days of deployment (Regime 4)
- Scour was confined to the the device ends and under the caissons at depths of ~ 15 cm
- Accretion was noted in the mid section along the edges ~15cm

Plan for Quantifying Scour

Aim: Build on Ryan's analysis

Correlate CFD with empirical formulations

- Check that methods are consistent in estimating shear stress associated with undisturbed flow
- Global Scour/Shear stresses
 - Empirical formulations for block geometry
 - CFD for block geometry
- Relate CFD shear stress output to scour potential
 - CFD for caisson geometry (accounts for shear stresses that may cause local scour)
 - Local scour formulations using a characteristic element (like horizontal pipe in Ryan's analysis)
- Verify results are consistent with deployment observations
 - determine whether scour was more likely due to local, global, or both scour processes
 - determine appropriate empirical formulations for general application

Apply empirical formulations to 2014 conditions

- Identify some representative nominal and extreme 2014 conditions based on empirical scour results
- Employ CFD to provide corresponding shear stress estimates
- Infer scour potential from shear stress mapping

Empirical Formulations

- Text of reference: *The Mechanics of Scour in the Marine Environment* (Sumer and Fredsoe, 2014)
- Formulations based on undisturbed flow properties (nearby seabed) estimated using: $H_{rms'} T_{p'} u_{m'} d_{50'} s, v, h, \alpha$
- Valid for live-bed conditions ($\theta > \theta_{cr}$) when undisturbed seabed velocities can cause sediment motion and contribute to the filling of scour holes downstream

Shields parameter under waves:

$$\theta = \frac{u_{fm}^2}{(s-1)gd_{50}} = \frac{\tau_b/\rho}{(s-1)gd_{50}}$$

Friction velocity:

$$u_{fm} = \sqrt{\frac{f_w}{2}} u_m$$

Wave friction factor (p. 201, text):

$$f_w = 0.035 (Re)^{-0.16}$$

Boundary-layer Reynolds number:

$$Re = \frac{a u_m}{v}$$

Amplitude of orbital velocity

$$a = \frac{H_{rms}}{2} \left(\frac{1}{\sinh\left(k_p h\right)} \right)$$

Empirical Formulations (Global Scour)

- Empirical formulations were derived from those for cylindrical piles under waves.
- K factors expand formulation to account for sediment size, device shape, alignment with respect to waves, finite device height, and sea state exposure time.
- This multistep approach is supported in text, p.192
 - 1. Scour under constant current:

$$\frac{S_c}{D} = K_I K_{\delta} K_a K_s K_{\alpha} K_h$$

 $K_I = 2.4$ (initial factor: live-bed scour, uniform sediment size) $K_{\delta} = 1$ (boundary layer factor, NA – river flow) $K_d = 1$ (sediment size factor, fig. 3.27 with D/d₅₀ = 2.5/0.2E-03 = 1.3E04) $K_s = 1.11$ (shape factor, rectangle with Length/Width = 9/2.5 = 3.6, Table 3.1) K_{α} = case specific, ~2 - 3.7 for Sept 2014 (alignment factor, fig. 3.29) $K_h = 0.19$ (finite device height factor, fig. 3.28 with h/D = 1.0/2.5)

2. Scour depth (vertical pile/waves only, Myrhaug/Ong 2013*, also p. 192 text):

$$\frac{S}{D} = \frac{S_c}{D} \{1 - \exp\left[-0.019(KC - 3)\right]\}; KC \ge 3, 45^o \text{ square cross section}$$

3. *Time-scale of scour (Petersen, Sumer and Fredsoe, 2012), substituting S from step 2 for S_0 below and t = 0.5 hrs:

$$S_{t} = S_{0} \left(1 - \exp\left(-\frac{t}{\tau}\right) \right)$$
$$\tau = \frac{D^{2}}{\sqrt{g(s-1)d_{50}^{3}}} 10^{-6} \left(\frac{KC}{\theta}\right)^{3} \left(\frac{1 hr}{3600 s}\right)$$

for KC < O(10) scour is due to leewake vortex shedding with an onset dependent upon KC and device geometry

 $KC = \frac{u_m}{Df_p} = \frac{\sqrt{2\sigma_u}}{Df_p}$

Empirical Estimates for September 2014 APEX deployment site and "block" geometry

Text recommends using u_m:

$$u_m = \sqrt{2} \sigma_u = \sqrt{2} u_{rms}$$
$$\sigma_u^2 = \int_0^\infty S_u(f) df$$

But since bimodal wave superposition occasionally results in greater seabed velocities, also considered using u_{sig}:

$$u_{sig} = 2\sigma_u = 2 u_{rms}$$

Empirical Estimates for September 2014 APEX deployment site

Assuming "block" geometry

$$u_m = \sqrt{2} \sigma_u = \sqrt{2} u_{rms}$$
$$\sigma_u^2 = \int_0^\infty S_u(f) df$$

Possible Alternative u_{sig} instead of u_m

Assuming "block" geometry

$$u_{sig} = 2\sigma_u = 2 u_{rms}$$

*bimodal maximum seabed velocity is at times closer to u_{sig} (u_{sig} = 0.52 m/s for Regime 4)

CFD for September 17 (Regime 4) APEX deployment site and "block" geometry

CFD (sampled undisturbed seabed) $u_m \sim 0.44 \text{ m/s}$ (3cm above floor) $\tau_w \sim 0.35 \text{ x } 10^{-3} \text{ m}^2/\text{s}^2$ $u_{fm} = \text{sqrt}(\tau_w) = 0.019 \text{ m/s}$

What would be the more appropriate way to define U_m for empirical estimates?

- With respect to H_{rms} (since recommended by text assuming single-mode spectra)
- With respect to H_{sig} (since bimodal spectra result in occasional higher maxima than would be seen for single-mode)

CFD sampling of undisturbed seabed

Regime 4 Sept 17, 2014

Scour was noted by divers for caisson geometry, especially for Regime 4 conditions

 How do we relate empirical scour estimates to shear stress map?

mag(wallShearStress) m2/s2

0.00225

Notable hotspots from

mag(U)

0.750

0.500

- Plunging over the caissons
- Interior caisson corners (interior vortex?)

Regime 4 Sept 17, 2014

CFD: Average shear stress of caisson geometry versus block geometry

• Since shear stresses are generally smaller for caisson geometry, could we infer that local scour would be less significant than global scour in this instance?

Regime 4

Sept 17, 2014

• Or perhaps things would look different if we averaged shear stress components instead of overall magnitudes

