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1 Introduction

This document presents results from tests to demonstrate underwater mapping capabil-
ities of an underwater vehicle in conditions typically found in marine renewable energy
arrays. These tests were performed with a tethered Seabotix vLBV300 underwater vehicle.
The vehicle is equipped with an inertial navigation system (INS) based on a Gladiator
Landmark 40 IMU and Teledyne Explorer Doppler Velocity Log, as well as a Gemini 720i
scanning sonar acquired from Tritech. The results presented include both indoor pool and
offshore deployments. The indoor pool deployments were performed on October 7, 2016
and February 3, 2017 in Corvallis, OR. The offshore deployment was performed on April
20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the
mission period, the sea state varied between 3 and 4, with an average significant wave
height of 1.6 m. Data was recorded from both the INS and the sonar.

During the deployments, the vehicle captured images of objects from multiple view
points. In doing so, the vehicle experienced a wide range of motion (e.g. translational,
rotational, and translational/rotational combinations). During the pool deployments, the
vehicle primarily observed an “X” shaped object. Square, “T”, and triangle shaped objects
were also observed. During the offshore deployment, the vehicle observed an underwater
sinker block. The data recorded from these deployments was used to reconstruct the objects
in 3D for the purpose of mapping.

The rest of this report is organized as follows: Section 2 briefly describes the parameters
of the data set and the associated code files that allow the user to interact with the data.
Section 3 reports the results of the reconstruction experiments.
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2 Data Set

The data sets used in the reconstruction experiments is comprised of two main parts:
navigation data and sonar imaging data. The vehicle navigation data is presented in the
vehicle’s local coordinate system. Each of the data points contains the vehicle’s pose and
a time stamp. The vehicle’s pose is represented as a position (x, y, z) in meters and an
orientation (roll, pitch, yaw) in radians. The time stamp represents the vehicle’s local
time at which the data point was generated. The sonar imaging data is represented as 2D
grayscale images. In these images, 255 (white) represents a strong acoustic return while 0
(black) represents no acoustic return.

We provide two data sets from our experiments. The first is from the offshore de-
ployment that images a mooring sinker block (’sinker block data.mat’), and the second is
from the indoor pool test (’pool data.mat’). Additionally, we provide our data processing
files. These files consist of MATLAB scripts to view, annotate, and project feature points
into the sonar images. A C++ template file is provided to aid the user in reconstructing
3D data points from their own annotated data. Additional details can be found in the
README file. If the user further wishes to work with their own recorded data, we direct
them to our ECD to CSV processing code, available at:
https://github.com/osurdml/GeminiECD_Decoder.

3 Results

3.1 Summary of Results

In section 3.2, the results show that using acoustic structure from motion (ASFM) algo-
rithms allows for objects to be reconstructed in 3D using object feature points identified
in sonar images. Section 3.3 illustrates that while a large percentage of sonar images can
be of low quality (and lead to poor 3D reconstructions), it is possible to automatically
distinguish between low and high quality images by characterizing them in terms of their
2D Discrete Cosine Transform (DCT) coefficients. In only using the predicted high quality
images, precise 3D reconstructions can be maintained.

The goal for this milestone was to achieve mapping reconstruction errors less than 50
cm. An “X” target object with known dimensions of 0.35 x 0.35 x 0.44 meters (length,
width, height) was reconstructed in a swimming pool, and a sinker block measuring 1 x
1 x 1 meters was reconstructed from an offshore deployment in sea states 3–4. The 3D
reconstruction estimated the length and width of the “X” target object at 0.43 x 0.43 m
(height was not estimated due to viewing the object from above) and the length and width
sinker block as 0.9 x 1.1 m. These errors of approximately 0.1 m meet the requirements of
the milestone.
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3.2 3D Reconstruction

Figure 1 shows the output of the 3D reconstruction for the “X” object from one section
of recorded data from a pool deployment. For this reconstruction, the “X” feature points
in the sonar images are first reconstructed into 3D space. Next, using the known object
proportions, a dense 3D point cloud is created. The ground truth size of the “X” object
is 0.35 x 0.35 x 0.44 meters (length, width, height). Note that for this reconstruction, one
edge of the “X” is not present. This is due to the fact that in this section of the recorded
data, that edge is not visible in the sonar images (it is hidden in the sonar’s acoustic
shadow). The 3D reconstruction estimated the length and width of the “X” target object
as 0.43 x 0.43 m compared to the ground truth of 0.35 x 0.35 m.

Figure 2 illustrates that even in the challenging case of the offshore deployment, a
reasonable reconstruction of the sinker block’s feature points is still able to be obtained.
The length and width of the sinker block was estimated as 0.9 x 1.1 m (ground truth of 1
x 1 m), giving approximately a 10% error.

Figure 1: 3D point cloud reconstruction of a known object (3D “X”) during a pool deployment. Feature
points are first identified in 2D sonar images by an expert user before being reconstructed using recorded
navigation data. The denser 3D point cloud shown is then generated from known object proportions.
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Figure 2: Top: Camera and sonar views of a mooring sinker block from the April 20, 2016 offshore
deployment. Bottom: Two views (left) and (right) of a 3D point cloud reconstruction of a mooring sinker
block. Feature points are first identified in 2D sonar images by an expert user before being reconstructed
directly from the sonar images (no navigation data was needed).

3.3 Sonar Image Quality Analysis

When low quality sonar images are used to identify object feature points, inaccurate and
variable labels occur. Using inaccurate feature point labels in the 3D reconstruction process
results in arbitrarily poor reconstruction errors. In the experiments performed, this error
was observed to be on the order of 100% - 400% of the reconstructed object’s size.

Figure 3 shows that across several pool tests, it can be seen that the majority (more
than 75%) of sonar images captured can be considered low quality. Figure 4 shows an
example of both low and high quality sonar images and their corresponding DCTs. By
utilizing only the sonar images identified as high quality, we are able to achieve the reported
reconstruction errors of approximately 10%-20%.

4



Figure 3: The percentage of frames that an expert user is unable to confidently hand label across multiple
pool deployments. The first two data sets contain only an“X” shaped object, while the final two data
sets contain the “X” shaped object among others (square, “T”, and triangle shaped objects). On average,
greater than 75% of the captured sonar images are not suitable for labeling.

Figure 4: Low quality (left) and high quality (right) sonar images of the “X” object and their DCT
coefficients. Coefficients closer to the bottom right corner indicate higher frequency information present in
the image.
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