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Abstract— This paper models the dynamics of a marine
tethered energy harvesting system focusing on exploring the
sensitivity of the kite dynamics to tether parameters. These
systems repetitively reels a kite out at high tension, then
reels it in at low tension, in order to harvest energy. The
kite’s high lift-to-drag ratio makes it possible to maximize net
energy output through periodic cross-current flight. Significant
modeling efforts exist in the literature supporting such energy
maximization. The goal of this paper is to address the need for
a simple model capturing the interplay between the system’s
kite and tether dynamics. The authors pursue this goal by
coupling a partial differential equation (PDE) model of tether
dynamics with a point mass model of translational kite motion.
One can simplify this model significantly by neglecting tether
mass and compliance, effectively transforming the tether into a
kinematic constraint. Simulation results show that the coupling
effects discarded through such a simplification are non-trivial.
For example, even when the tether is neutrally buoyant, its
transverse vibrations can still cause significant oscillations in
net kite forcing.

I. INTRODUCTION

This paper models the coupled dynamics of the tether
and kite used in a marine hydrokinetic energy harvester.
Figure 1 provides a sketch of this harvester. Reeling the kite
out under tension harvests energy. Ideally, the kite is reeled
back in under much lower tether tension levels, so that only
a fraction of the total energy harvested is reinvested in kite
recovery. Tethered energy harvesters exploiting such “pump-
ing” motion are under active exploration for both airborne
and marine hydrokinetic applications. The practical appeal of
such systems is twofold. First, substantial renewable energy
resources exist at locations, altitudes, and depths beyond the
affordable reach of traditional fixed infrastructure systems,
such as fixed wind towers or water turbines. Tethered systems
have the potential to harvest energy affordably from such
hard-to-reach resources, such as high-altitude winds or Gulf
Stream currents [1]. Second, a high lift-to-drag tethered
system can maximize its energy harvesting potential through
cross-current flight. This fact, highlighted in a seminal 1980
paper by Lloyd [2], serves as a key motivator for much of
today’s research on tethered energy harvesting.

There is a rich existing literature on the modeling, opti-
mization, and control of tethered energy harvesting systems.
Most of this literature focuses on airborne wind energy
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harvesting systems, with a growing interest in marine hy-
drokinetic systems. For both airborne and marine systems,
the literature tends to model the tether in two ways: assuming
the tether is rigid, or assuming it can deform. There are ad-
vantages and disadvantages to each approach. For instance, in
the context of optimization, assuming a rigid tether decreases
the number of optimization variables required and can make
the optimization problem easier to solve. On the other hand,
allowing the tether to deform may allow for a more accurate
modeling of the system.

There are multiple examples of rigid tether in the litera-
ture. This is typically implemented in practice by imposing
a kinematic constraint on the kite’s position. For instance,
Cobb et al. [3] used such a modeling approach. In their paper,
they used iterative learning to optimize the path of a marine
hydrokinetic system. For this, they modeled the kite as a
three-dimensional unifoil with six degrees of freedom. They
modeled the tether by constraining the kite to a sphere of
radius equal to the tether length. One consequence of this
approach is that it imposes that the tension force applied to
the kite always points in the direction of the base station. This
assumption is prevalent in the literature as it helps simplify
the kite flight optimization problem. Another example of
tethered marine harvester modeling, is the one proposed by
Li et al. [4]. They also made the rigid tether assumption
to explore the stability of the system and design an non-
linear controller to control the kite. We also find more
examples of treating the tether as rigid in the airborne
wind energy literature. Canale et al. [5], for example used
model predictive control to maximize the energy generated
by a kite with a rigid tether. Similarly, Costello et al. [6],
used a simplified model which includes a rigid tether for
optimization. William et al. [7] also assumed a straight tether
for a kite towing a ground vehicle.

While the assumption of a rigid tether simplifies the
optimal trajectory generation problem, it might miss some
relevant dynamics. For example, allowing the kite to deform
affects the kite dynamics by modifying the direction of the
tension force. One way this is handled in the tethered kite
literature, is by using a discrete lumped mass approximation
to model the tether. In this approach the tether is discretized
as a series of point masses. This masses can be elastically
connected (with springs) or inelastically connected. For in-
stance, Williams et al. [8] modeled the tether, for an airborne
kite system, using inelastic links. Koenemann et al. [9] used
a quasi-static tether approximation in the context of the
optimal control of tether kites during landing maneuvers.
This approach allowed them to neglect vibrations while still



modeling the shape of the tether. Also for airborne wind
energy systems, Trevisi et. al [10] proposed an approximate
analytical approach to account for the effect of the tether sag
on the power generation of the kite. While the literature for
marine systems is more scarce than the airborne wind energy
literature, there is still work that considers a tether using
the lumped mass approach. For instance, Williams et al.
[11] used the lumped mass tether model and compared it to
experimental results. Similarly, Siddiqui et al. [12] compare
a tethered underwater kite model that uses a lumped mass
tether model with experimental results in a water channel.

Another way to model the tether is to describe its shape
with a continuous, partial differential model. While this
approach is not as common in the tethered energy generation
literature, there is a body of tether systems literature partic-
ularly relevant. For instance, in 1983 Ablow and Schechter
[13] simulated the dynamics of an undersea cable this way.
Driscoll et al. [14] applied Galerkin methods to a continuous
model of the tether of an underwater robot.

To design controllers that maximize the energy generated
by tethered harvesters, we need simple dynamic models that
can capture the relevant dynamics of these systems. It is thus
critical to determine which dynamics are relevant and which
dynamics can be negligible. While for tethered airborne wind
energy the validity of rigid tethers has been explored [7],
this has not been explored for tethered marine hydrokinetic
systems.

In this paper we explore the effect the tether dynamics
have on the kite. More specifically, we explore the effect of
buoyancy, mass, and compliance of tether. A deeper exami-
nation of the tether fluid-structure interactions is beyond the
scope of this paper. The main contributions in this paper are
summarized here:

1) We propose a partial differential model for the dynam-
ics of a tethered marine hydrokinetic energy harvester
with a coordinate transformation that allows a simple
handling of the moving boundary conditions of the
tether PDE.

2) We explore the effect of a flexible tether model on
the kite dynamics by coupling our tether model with
a 3DOF kite model.

3) We explore the sensitivity of the combined tether/kite
dynamics to tether parameters.

II. KITE MODEL

In the water, the kite experiences the following forces:
gravitational forces, tension forces, buoyancy forces, and
hydrodynamic surface forces. The hydrodynamic surface
forces are typically decomposed into lift, drag, and side
force.

We propose a simplified 3-degrees-of-freedom model for
the kite. We assume that the rolling and pitch dynamics
are faster than the translational dynamics of the center of
mass, so that the kite can be represented as a point mass.
Additionally, we assume the kite is buoyant, that is to say
that the weight of the kite cancels with the buoyancy force.
We also assume we control the kite’s position by changing

the angle of the lift vector with respect to a unit vector in
the plane formed by the relative wind and position vector of
the kite.
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ŷw

−→
V ∞

−→
V

−→
V rel

−→
D

−→
L

−→
T

φ

Fig. 1. Diagram of 3DOF kite, w−frame, and external forces

We define the position and velocity of the kite with respect
to the inertial frame defined by the unit vectors

{
ı̂, ̂, k̂

}
~r = xı̂+ ŷ+ zk̂ (1)
~V = ẋı̂+ ẏ̂+ żk̂. (2)

We further define the position unit vector

êr =
~r

‖~r‖
(3)

and define the relative velocity vector as

~Vrel = ~V − ~V∞ (4)

where ~V∞ is the water current velocity and has the compo-
nents {Uw, Vw,Ww}. We now define the w-frame (or ”wind”
frame) with the unit vectors {x̂w, ŷw, ẑw} defined as

x̂w =
~Vrel

‖~Vrel‖
(5)

ẑw =
x̂w × êr
‖x̂w × êr‖

(6)

ŷw =
ẑw × x̂w
‖ẑw × x̂w‖

(7)

We can now define the lift and drag forces the kite experi-
ences

~L =
1

2
ρCL(α)S‖~Vrel‖2(cosφŷw + sinφẑw) (8)

~D = −1

2
ρCD(α)S‖~Vrel‖2x̂w (9)



where ρ, CL, CD, α, S, and φ are respectively, the water den-
sity, the lift coefficient, the drag coefficient, the angle of
attack, the wing surface, and the kite angle with respect to
the ŷw unit vector.

The hydrodynamic coefficients CL and CD are modeled
in terms of α as follows::

CL(α) = c1α+ c2 (10)

CD(α) = b1α
2 + b2α+ b3 (11)

The sum of external forces is

~Fext = ~L+ ~D + ~T (12)

where ~T is the tension force from the tether.
We can now write a state-space model for the kite

d

dt


x
y
z
u
v
w

 =



u
v
w

1
m
~Fext · ı̂

1
m
~Fext · ̂

1
m
~Fext · k̂

 (13)

where the inputs to the model are: {Tx, Ty, Tz, φ, α}.
This formulation of the kite model assumes the tension

force is dictated by an additional tether model.

III. TETHER MODEL

To explore to which extent a tether affects the dynamics
of the underwater kite, we need to formulate a tether model.
This model should capture the elastic behavior of the tether,
and should also handle the moving boundary conditions due
to both tether release and the moving kite.
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Fig. 2. Elastic tether coordinates

We define the following coordinates for the tether:
1) s: Distance along undeflected tether.
2) η: Normalized coordinate along undeflected tether.
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Fig. 3. Infinitesimal tether element

3) L: Total tether length.
4) Q(t): Unreleased tether length.

We also define the absolute position of a point in the
tether with respect to the inertial frame {ı̂, ̂, k̂} as:
{x(t, s), y(t, s), z(t, s)}.

Now let us consider the infinitesimal element of the tether
in Figure 3. We define ds as an infinitesimal change along
the s−coordinate, and define x′ = ∂x

∂s , y
′ = ∂y

∂s , z
′ = ∂z

∂s .
The strain the element experiences is thus

ε =

√
x′2 + y′2 + z′2ds− ds

ds
(14)

which simplifies to

ε =
√
x′2 + y′2 + z′2 − 1. (15)

In the linear deformation region the stress the element
experiences is

σ = Eε = E
√
x′2 + y′2 + z′2 − 1 (16)

where E is the Young’s modulus of elasticity. Given an cross-
sectional area A, the tension this element experiences is

T = σA = EA
√
x′2 + y′2 + z′2 − 1. (17)

This tension acts along the tether element, with compo-
nents

Tx = Tξx (18)
Ty = Tξy (19)
Tz = Tξz (20)



where

ξx =
x′√

x′2 + y′2 + z′2
(21)

ξy =
y′√

x′2 + y′2 + z′2
(22)

ξz =
z′√

x′2 + y′2 + z′2
(23)

The dynamics of the tether can be thus described by the
following system of partial differential equations

ẍ =
E

ρ

∂

∂s
εξx +

qx
ρ

(24)

ÿ =
E

ρ

∂

∂s
εξy +

qy
ρ

(25)

z̈ =
E

ρ

∂

∂s
εξz +

qz
ρ

(26)

where ρ is the density of the tether, and qx,y,z denote
additional external force densities to capture, for example,
buoyancy effects.

To handle the changing released tether length, we can do
a coordinate transformation to the η-coordinate

ẍ =
E

ρ(L−Q)

∂

∂η
(εξx) +

qx
ρ

(27)

ÿ =
E

ρ(L−Q)

∂

∂η
(εξy) +

qy
ρ

(28)

z̈ =
E

ρ(L−Q)

∂

∂η
(εξz) +

qz
ρ

(29)

Q̇ = u(t) (30)

Equations (27)-(30) constitute the full set of equations
necessary to capture the dynamics of tether.

IV. RESULTS

In this section we explore the effect our tether model has
on the dynamics of the kite in simulations representative of
a real kite system. We also explore the effect varying tether
longitudinal stiffness, tether mass, and tether buoyancy have
on the dynamics of the kite.

A. Inverse Dynamics Simulation

To ensure a consistent comparison between simulations,
we impose a representative cross-current figure-8 trajectory
in the spherical coordinates of the kite, and solve for the
inputs that would yield this trajectory. We formulate this
inverse dynamics problem by adding additional algebraic
equations to the model presented in Section II:

ψ = a1 sin (w1t) (31)
θ = a1 sin (w1t) cos (w1t) + θ0 (32)

as well as the following differential equation:

ṙ = a2 sinw2t (33)

where ψ and θ are the azimuth and zenith angles of the kite
with respect to the floating platform.

We integrate these equation with the model through the
coordinate transformation:

x = r cosψ sin θ (34)
y = r sinψ sin θ (35)
z = r cos θ (36)

This trajectory, while not a power maximizing trajectory,
shares the shape of the typical path tethered energy systems
follow.

B. Comparison with rigid tether

We can compare the PDE tether model with a straight
tether by removing the tether model and adding the additional
algebraic equation:

~T = T êr (37)

This equation captures the fact that for a straight tether,
the tension always points towards the floating platform of
the tether.

C. Simulation parameters

We solve the inverse dynamics problem for the straight
tether and the elastic tether using the DASSL solver in
OpenModelica and discretizing the PDEs along η into N
segments.

All the simulations we show in this paper have the
following parameters in Table I

TABLE I
SIMULATION PARAMETERS

Parameter Value Units

Hydrodynamic parameters: b1 1.221e-4 deg−2

b2 5.309e-4 deg−1

b3 1.1103e-2 -
c1 3.123e-2 deg−1

c2 6.6675e-2 -

Kite mass: m 100 kg

Total wing surface: S 20 m2

Water density ρ 1000 kg m−3

Current speed: Uw 0.5 m s−2

Vw 0 m s−2

Ww 0 m s−2

Trajectory parameters: a1 0.2 rad
a2 0.25 m s−1

w1 0.15 rad s−1

w2 0.1 rad s−1

θ0 2 rad

PDE Discretization: N 10 -
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D. Simulation comparisons

In Figure 4 we show the imposed trajectory the kite
follows during the reel-out portion of the cycle.

In the simulations with a straight tether and a flexible
tether the kite follows this pre-imposed figure-8 trajectory.
We can thus explore the effect of having a flexible tether
on the dynamics of the kite by looking at the deviations in
angle of attack α and roll angle φ between the flexible tether
simulations and the straight tether simulations.

The nominal (straight tether) input trajectories in Figures
5 and 6 are used as references for the rest of our simulations.
The idea is that the more significant the effect of the tether
on the kite dynamics, the larger the discrepancies between
the control inputs computed by the rigid and flexible tether
models.
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Fig. 5. Angle of attack nominal trajectory

In the rest of the figures, we explore the effect tether
parameters have on the kite dynamics. We can, for instance,
explore the effect of the tether mass, which we decouple from
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Fig. 6. Roll angle nominal trajectory

buoyancy effects by varying the radius of the tether. Figures
7 and 8 show deviations from the nominal input trajectories
for three different radii.
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Fig. 7. Deviation from nominal angle of attack for different tether radii.

We can also explore the effect the buoyancy of the tether
has on the kite. In Figures 9 and 10 we show the deviations
from nominal input trajectories for different tether densities.
To avoid confounding the buoyancy effect with inertial
effects, we ensure the total mass of the tether is maintained
constant by adjusting the radius of the tether as we change
the density.

We summarize the results by looking at the root mean
squared deviations of these inputs normalized by the root
mean squared nominal values, in Table II.

V. CONCLUSION

In this paper, we explored the interplay between an elastic
tether model and kite dynamics, in a marine-hydrokinetic
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Fig. 9. Deviation from nominal angle of attack for different tether densities.

energy harvesting system. For this, a simplified model con-
sisting of an elastic tether, and 3 degrees-of-freedom kite
was developed. We compared the input trajectories of a kite
following a pre-imposed representative figure-8 trajectory
for a kite with an elastic tether and a kite that treats the
tether as a kinematic constraint. We explored the effect of
different tether parameters on the tether. Both the buoyancy
of the tether and the mass of the tether required noticeable
corrections of the kite inputs to track the pre-imposed
trajectory. On the other hand, the longitudinal stiffness of
the tether had a negligible effect. The effect of buoyancy
increased for non-neutrally buoyant tethers. Particularly, the
more buoyant tether with a density of 800 kgm−3 presented
a larger normalized root mean deviation of 16 % from the
nominal roll angle trajectory. The effect of mass was however
the most significant of the parameters explored. For instance
a 5mm tether had average deviations of 7% from the nominal
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Fig. 10. Deviation from nominal roll angle for different tether densities.

TABLE II
NORMALIZED DEVIATIONS FROM NOMINAL INPUTS FOR DIFFERENT

TETHER PARAMETERS

Normalized RMSE in α Normalized RMSE in φ

ρ [kg m−3]
800 0.0507 0.1601
1000 0.0304 0.067
1200 0.0324 0.0836

r [m]:
0.005 0.0304 0.0670
0.01 0.0735 0.1586
0.03 0.3207 0.4736

E [Pa]:
100e9 0.0304 0.0670
200e9 0.0304 0.0670

roll trajectory, while a 3 cm tether had average deviations
of 47% from the nominal roll trajectory, meaning that it
required considerably more control authority to achieve the
desired figure-8 trajectory, than the kite with a massless
tether.
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