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ANACA0018airfoil in freestreamvelocity is oscillated in longitudinal, transverse, andangle-of-attackdirectionswith

respect to the freestreamvelocity, knownas surge, plunge, andpitch.The lift-basedequivalencemethod introducesphase

shifts between these three motions to construct in-phase sinusoidal components for maximum lift, waveform

construction. Lift cancellation is also determined with the exact negative pitch and plunge motion amplitudes found

from the equivalence method to achieve out-of-phase wave destruction. Lift cancellation occurs when a combination of

these motions is sought to obtain a constant lift magnitude throughout the oscillation cycle. To achieve both equivalence

and cancellation of lift, a prescribed pure pitch amplitude through the Theodorsen theory equates the corresponding

equivalent plunge amplitude and pitch–plunge phase shift. These Theodorsen, linear superposition findings of pitch–

plunge are leveraged toward theGreenberg theory to determine a closed-form, surge–pitch–plunge solution through the

addition of a surge–plunge phase shift and optimal surge amplitude for lift cancellation. The lift cancellation surge–

pitch–plunge amplitudes define the equivalence amplitude investigated here and theoretically limit the experiment to

combinations of the first lift harmonic of the Greenberg theory. The analytical results are then compared with

experimental lift force measurements and dye visualization. The normalized lift differences due to unsteady wake and

boundary-layer behavior are examined to explore the extents of the Greenberg theory for these cases of lift-based

equivalence and cancellation.

Nomenclature

a = pitch, pivot point
b = one-half of the chord length, m
C�k� = Theodorsen’s function
Cl = airfoil lift coefficient
c = airfoil chord, m
F�k� = real part of the Theodorsen function
f = physical frequency, 1∕s
G�k� = imaginary part of the Theodorsen function
h = plunge displacement, m
k = reduced frequency, ωc∕�2v0�
L = airfoil lift, N
Re = Reynolds number based on airfoil chord (ρv0c∕μ)
T = time period, s
t = time, s
v0 = freestream velocity, m∕s
X = surge, longitudinal displacement, downstream positive, m
xp = chordwise distance from the leading edge to the pivot

point, m
α = angle of attack, deg
θ = pitch angle displacement, deg
μ = dynamic viscosity of water (10−3 Pa ⋅ s)
ρ = density of water (1000 kg∕m3)
σ = surge amplitude with respect to freestream velocity
ϕ = phase shift for plunge from surge, deg
Ψ = phase shift for pitch from plunge, deg
ω = circular frequency (2πf), deg ∕s

Subscripts

g = Greenberg’s approach
m = maximum displacement (amplitude)
qs = quasi-steady thin-airfoil-theory approach
t = Theodorsen’s approach

I. Introduction

U NSTEADYaerodynamics includes flow conditions that are not
fully understood or confidently predicted for low reduced fre-

quency, shed vortical structures, large motion amplitudes, and other
time-varying aerodynamics. Conditions on airfoils experiencing
unsteady aerodynamics have been broadly studied, predominantly
for helicopters in hovering and forward flight. Similar flow phenome-
non also occurs in wind turbines, flapping wing, slowed rotors, and
many unmanned aerial vehicle configurations. Understanding the
aerodynamics and kinematics of these types of flow–motion inter-
actions can improve functionality toward the intended aeromechan-
ics purposes, and improve optimization routines from closed-form
solutions.
Of interest is the investigation of analytical lift-based equivalence

and cancellation for airfoils undergoing surge–pitch–plunge combi-
nations. The cross section of an airfoil can undergo vertical displace-
ment, rotation, and streamwise displacement with respect to the
freestream fluid flow: referred to as plunge, pitch, and surge. To
better understand the underlying flow physics, the experiments con-
ducted intend to combine these individual dynamic motions that
largely influence unsteady aerodynamics.
Lift-based equivalence occurs when the individual lift contribu-

tions of surge, pitch, or plunge are near-constant amplitude compared
with each other despite undergoing dynamic motions. Lift-based
cancellation is the combination of these individual components to
achieve a static lift amplitude, despite undergoing large, pulsating
motions that would typically create large deviations in lift compared
with that of an airfoil at constant incidence and freestream flow
velocity. Including surge as part of this investigation expands on past
works that have examined only linear superposition of pitch and
plunge.
These predominantly rotor-type applications have complex flow-

fields, oftenwithmultiple blades rotating through compressible flow.
Frequently, complicated unsteady research is reduced to cases of

Presented as Paper 2019-3337 at the 2019 AIAA Aviation Forum, Dallas,
TX, January 17–21, 2019; received 18 September 2019; revision received 6
April 2020; accepted for publication 22 May 2020; published online 25
September 2020. Copyright © 2020 by Kelsey H. Elfering and
Kenneth O. Granlund. Published by the American Institute of Aeronautics
and Astronautics, Inc., with permission. All requests for copying and permis-
sion to reprint should be submitted to CCC at www.copyright.com; employ
the eISSN 1533-385X to initiate your request. See also AIAA Rights and
Permissions www.aiaa.org/randp.

*Graduate Research Assistant, Department of Aerospace and Mechanical
Engineering; kelferi@ncsu.edu. Student Member AIAA.

†Assistant Professor, Department of Aerospace and Mechanical Engineer-
ing; kgranlu@ncsu.edu. Associate Fellow AIAA.

4629

AIAA JOURNAL
Vol. 58, No. 11, November 2020

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

D
ec

em
be

r 
1,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
90

68
 

https://doi.org/10.2514/1.J059068
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J059068&domain=pdf&date_stamp=2020-09-24


incompressible, single-blade, and oscillatory planar motions. These
characteristics are often modified due to too many variables affecting
the samephysicalmechanisms of the results. There is a base of existing
works that have taken a similar approach, but often have investigated
either a singular motion of surge, pitch, or plunge, or a combination of
two motions, but less frequency of all three motions combined. An
earlier representative experimental work of pure surge investigations
can be found in [1] andmore recently in [2,3]. Of key interest has been
the interaction of pitch and plunge, as the linear superposition of both
lift forces has been thought to be nearly equal to one another [4–8].
There are also exampleworks that investigated coupling of surge–pitch
in [9–11], and alsoChoi et al. [12] investigated surge–plunge coupling.
An example of investigating all three motions can be found in [13]
concerning recreation of gust effects. Thiswork proposes to investigate
this simplified case for two-dimensional, unsteady aerodynamics of a
single, rigid airfoil undergoing planar oscillatory motion of the com-
bined motions of surge, pitch, and plunge.
The notable work of Greenberg [14] has influenced this research

area greatly as a closed-form solution to an airfoil undergoing small,
sinusoidal oscillations of surge, pitch, and plunge. With Greenberg’s
lift equation, a phase shift is introduced between the sinusoidal
combinations of surge, pitch, and plunge to determine the airfoil
normalized lift with the aim of canceling dynamic lift effects. The
required phase shift and corresponding variables related to these
motions are determined analytically and verified experimentally to
obtain lift equivalence between pitch and plunge to cancel surge and
the respective coupled terms of surge–pitch and surge–plunge.

II. Background

Here, we use reduced frequency k to describe the angular wave-
number of shed vorticity from the trailing edge. If k → 0, the shed
vorticity from a change in the state of circulation of the airfoil has
advected far enough downstream in the wake that it does not influ-
ence the instantaneous circulation of the airfoil; we call this quasi
steady. When k > 1 and the amplitude of unsteady motion is small,
noncirculatory effects start to dominate. In the range of k � O�0.1� is
where the effects of wake circulation are largest.
Theodorsen’s solutions [15] were built with a time domain created

by Wagner [16] to predict wing and airfoil behavior. Isaacs [17]
extended Theodorsen’s theory to include a periodic, sinusoidal free-
stream velocity with a fixed pitch about the midchord, excluding
plunge, with a Fourier series describing the wake. The Theodorsen
approach was used toward pitch–plunge lift-based equivalence and
cancellation by McGowan et al. [4]. The basis for this equivalence
process is a starting point for the added complexity of introducing
surge to the equation.
When surge is a component of the Greenberg equations, coupling

interactions occur between surge–pitch and surge–plunge, which is a
departure from the linear superposition that occurs between pitch–
plunge. Greenberg [14] used both theories to introduce a closed-
form, analytical result to include harmonic plunge and pitch motions
to predict lift and pitching moment in an oscillating freestream. This
allowed for changes in motion, like surge rate to be included instead
of strictly using constant incidence and resulted in a simpler equation
for implementation.
Van der Wall and Leishman [18] evaluated multiple theories in

comparison to Isaacs [17], one being the Greenberg theory [14]. The
thorough review demonstrates that Greenberg’s theory assumes a
uniform velocity perturbation following the chord of a flat plate in
potential flow. This describes a back-and-forth motion into and away
from the freestream and not necessarily an oscillating freestream
velocity. Another simplification is that a high frequency is applied
to the wake integrals to result in constantly spaced, periodic wake
structures and concluded that this is equal to neglecting the induced
velocity flow oscillation amplitude and makes the theory substan-
tially inaccurate above σ � 0.4 [18].
Granlund et al. [2] also demonstrated that moving a test article in a

constant freestream yields a similar result to an oscillating freestream
with a static test article, a finding that allows for a test article motion
methodology to be conducted for predicting streamwise gusts as

well. These oscillating freestream experiments were conducted in a
shutteredwind tunnel that can produce sinusoidal variation up to 10%
independent of frequency k < 2.5.
These theories are meant to predict the unsteady behavior of air-

foils while the flow remains attached, without reverse flow, and with
small dynamic motions. Because of the range and rate of dynamic
airfoil motions, separation of the boundary layer from the airfoil
occurs. This led to several experimental investigations [4,5] to deter-
mine if the equations still predicted lift accurately when separation
occurs.
More recently, Greenblatt et al. [3] varied flow speed in a wind

tunnel test section with moving louvers at Reynolds number 75,000
and 125,000 for NACA 0012 and 0018 airfoils. This shuttered wind
tunnel testing method produces a gust for velocity oscillation and a
pressure gradient in the freestream direction. The gust couples the
reduced frequency k to the oscillation amplitude σ comparedwith the
freestream velocity, but only select combinations of parameters exist
because the large oscillation amplitude is achieved by operating the
tunnel in resonance [19]. Results indicated that there was not strong
coupling between the simultaneous oscillation of pitching and surg-
ing. This finding lends to only include the primary coupling modes
between surge and pitch in the following lift equivalence model.
Finding a lack of high-amplitude oscillating freestream compari-

son to these theories, Strangfeld et al. [9] evaluated surge amplitude
up to σ � 0.5 and k of 0.074–0.0985 for a NACA 0018, mean
Reynolds number of 300,000, at constant, different, positive, and
negative static angles of attack of 1, 2, 3, 4, and 8 deg.They concluded
that separation bubble location on the airfoil suction surface and
breakdown of the Kutta condition causes Greenberg and other theo-
ries to be inapplicable to thick airfoils below Reynolds number
1,000,000.
A general consensus is that the linearized assumption in the

Greenberg equation is most relevant when separation only occurs
from the trailing edge, because the bound circulation in the theory is
shed here due to the Kutta condition [9,18]. This physical constraint
is a primary reason that a thicker NACA 0018 airfoil was chosen to
promote trailing edge separation.
In the current work, combinations of surge–pitch–plunge at

Reynolds number 40,000 for a NACA 0018 airfoil are studied using
an analytical Greenberg [14] method and experimental mean force
measurements with dye-flow visualization in a free-surface water
tunnel [20]. In this approach, the theory is comparedwith experiment
while observing the flow conditions as they conform and deviate
from the theoretical assumptions.

III. Analytical Approach to Surge–Pitch–Plunge
Equivalence and Cancellation

The pitch amplitude is varied with the pivot-point location at the
quarter-chord. The corresponding equivalent pure pitch and plunge
amplitudes with phase shift Ψ are determined from the lift-based
equivalence method of the Theodorsen theory [4,15]. These findings
due to the linear superposition of pitch and plunge are leveraged and
applied toward the Greenberg theory [14]. The initial Greenberg
theory approach begins with only considering the two translating
oscillations of surge and plunge. This is accomplished by introducing
a phase shift ϕ between surge and plunge while temporarily omitting
the pitch terms. Once ϕ is determined, the lift terms due to pitch
are reintroduced with the phase shift between surge and pitch repre-
sented as Ψ� ϕ. This phase shift result is a commutative bridge
between pitch–plunge and surge–plunge that now relates surge–
pitch, and relates a complete phase shift theory between surge, pitch,
and plunge.

A. Theodorsen Theory

In this section, the McGowan approach [4] for pitch–plunge
equivalence is visited. Phase shift and amplitude for pitch–plunge
equivalence requires the lift for plunge be set equal to pitch. The lift
due to Theodorsen’s theory solely for airfoil unsteady pitch–plunge
contributions is
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Lt�t� � −πρb2
�
�h� v0 _θ − πba�θ

�

− 2πρv0C�k�
�
_h� v0θ� b

�
1

2
− a

�
_θ

�
(1)

The plunge and pitch displacements are denoted by h and θ,
respectively, to match the parts of vertical displacement and angle

of attack, where the amplitudes are hm and θm. These terms are for

continuity of nomenclature when Theodorsen’s theory is represented

in the later Greenberg approach. The pivot point for pitch along the

chordwise distance from the leading edge is xp, where the half chord
is b and the pivot point a � �xp − b�∕b. With a frequency f and

period T the circular frequency is defined as ω � 2πf and the

reduced frequency is k � ωb∕V∞. For pure-sinusoidal motions,

the plunge displacement, plungevelocity, and plunge acceleration are

h � hme
iωt _h � hmiωe

iωt �h � −hmω2eiωt (2)

With pitch, pitch rate, and pitch acceleration as follows, whereΨ is

a phase angle:

θ � θme
i�ωt�Ψ� � θme

iωteiΨ _θ � θmiωe
i�ωt�Ψ� � θmiωe

iωteiΨ

�θ � −θmω2ei�ωt�Ψ� � −θmω2eiωteiΨ (3)

The expressions for h and θ and their respective time derivatives

from Eqs. (2) and (3) are substituted into the lift Eq. (1) and arranged

such that Lt;plunge�t� � Lt;pitch�t�. The McGowan solution to the

Theodorsen pitch–plunge lift-based equivalence equations for pitch

phase shift (6), and pitch–plunge amplitudes (4) and (5), for a given

reduced frequency yields the real parts followed by the imaginary

parts:

hmE � �C cosΨ − B sinΨ�θm (4)

−hmD � �B cosΨ� C sinΨ�θm (5)

The closed-form solution for the phase shift angleΨ is found as the

following expression when Eq. (4) is divided by Eq. (5) and dividing

the resulting expression right-hand-side numerator and denominator

by cosΨ.

Ψ � tan−1
�
C − AB

AC� B

�
(6)

where

A � �k� 2G�∕�−2F� B � k� 2G� 2k

�
1

2
− a

�
F

C � ak2 � 2F − 2k

�
1

2
− a

�
G

Additionally defined

D � 2
k

b
F E � k

b
�k� 2G�

Consider the case of pitch–plunge with a reduced frequency of

0.393 and a plunge amplitude (with respect to chord length) of 0.50c
shown in Fig. 1. From Eq. (4) this yields a pitch amplitude of 19.91°

and a pitch phase shift of 69.82° from Eq. (6). Lift equivalence and

cancellation are achieved by determining identical pitch–plunge

amplitudes and corresponding phase shift angle, and there is time-

independent linear superposition between the two lift components. It

is noted that the phase angle and pitch–plunge amplitude relation-

ships are only dependent on the reduced frequency, pivot-point

location, and the Theodorsen function C�k�.

B. Greenberg Surge–Plunge Theory

Linear superposition between all lift components does not occur

when a surge element is present in the cases of surge–pitch, surge–

plunge, or surge–pitch–plunge. A formulation of the samemethod that

was employed to find Eqs. (4–6) is considered for a reducedGreenberg

surge–plunge equation. A new phase shift angle ϕ is introduced

between surge and plunge lift components, where the plunge displace-

ment, plunge velocity, and plunge acceleration become

h � hme
i�ωt�ϕ� � hme

iωteiϕ

_h � hmiωe
i�ωt�ϕ� � hmie

iωteiϕ

�h � −hmω2ei�ωt�ϕ� � −hmω2eiωteiϕ

Lg;surge−plunge�t� � −πρb2� �h� _vθm�
− 2πρvb�v0θm � σv0θmC�k�eiωt � _hC�k�� (7)

where

v � v0�1� σeiωt� _v � iv0σωe
iωt (8)

Equation (7) is a reduced surge–plunge Greenberg expression for

lift. The surge velocity and acceleration are left in complex form

defined in Eq. (8). For surge–plunge equivalence, the pure plunge

component is set equal to the pure surge and surge–plunge coupled

components. The expressions for plunge displacement h and respec-

tive derivatives are substituted into Eq. (7) and arranged, where

Lg;plunge�t� � Lg;surge�t� � Lg;surge−plunge;coupled�t�. Equations (9) and
(10) yield the real part relationships followed by the imaginary parts.

σθm�L� 2� � hm
k

b
�K cosϕ − L sinϕ� (9)

σθmK � hm
k

b
�L cosϕ� K sinϕ� (10)

where

K � −k − 2G − 2σG cosωt − 2σF sinωt

L � 2F� 2σF cosωt − 2σG sinωt

Fig. 1 Recreated example case 3E, of the McGowan Clt�t∕T� solution
[4] of the Theodorsen lift-based equivalence and cancellation for
k � 0.393, θm � 19.91°, hm � 0.50c, σ � 0, Ψ � 69.82°.
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The phase shift angle ϕ closed-form solution is found as the follow-

ing expression when Eq. (9) is divided by Eq. (10) and dividing the

resulting expression right-hand-side numerator and denominator by
cosϕ.

ϕ � tan−1
�
K2 � L2 � 2L

2K

�
(11)

Here it is noted that the phase shift and surge–plunge relationship are

timedependent,whichwould require a time-varying angle of attack.To
meet a dynamic angle of attack, inherently a pitching motion element

would have to be introduced to satisfy this constraint, eliminating the

potential of solely having surge–plunge motions for lift-based equiv-

alence and cancellation. These expressions would also result in a

nonsinusoidal oscillation motion with a time-dependent phase shift
angle. It is due to these reasons that equivalence and cancellation for the

Greenberg theory with a surge component require all three motions of

surge–pitch–plunge.

C. Greenberg Surge–Pitch–Plunge Theory

If only pitch and plunge occurred without surge amplitude, the

Greenberg equation [14] does not simplify to the Theodorsen equa-

tion, the last term in Eq. (12) being the differentiation. TheGreenberg

lift equation is

Lg�t� �−πρb2� �h� v_θ� _v�θm� θ�−ab�θ�
− 2πρvb�v0θm � σv0θmC�k�eiωt��b�1∕2−a�_θ� v0θ�C�k�
� _hC�k�� v0θC�2k�eiωt� (12)

The analytical approach presented here removes the last term so

thatwhen the surge amplitude is zero theGreenberg theory reduces to
the Theodorsen theory. Consideration is also taken for the surge–

pitch coupling from this term to be neglected due to the findings of

Greenblatt et al. [3]; there was not strong coupling between the

simultaneous oscillation of pitching and surging. This reduction

yields

Lg;reduced�t� � −πρb2
�
�h� v_θ� _v�θm � θ� − ab�θ

�
− 2πρvb�v0θm � σv0θmC�k�eiωt

��b�1∕2 − a�_θ� v0θ�C�k� � _hC�k�� (13)

Now that the surge–plunge phase angle ϕ has been determined in
the previous section, and the lift terms due to pitch have been

reintroduced to the lift equation, the phase shift between surge and

pitch is represented as Ψ� ϕ. This phase shift is a commutative

bridge between pitch–plunge and surge–plunge that now relates

surge–pitch, completing the phase shift relationship between surge–
pitch–plunge. The plunge displacement parameters are maintained

from Eq. (7) and the pitch, pitch rate, and pitch acceleration are

θ � θme
i�ωt�Ψ�ϕ� � θme

iωtei�Ψ�ϕ�

_θ � θmiωe
i�ωt�Ψ�ϕ� � θmiωe

iωtei�Ψ�ϕ�

�θ � −θmω2ei�ωt�Ψ�ϕ� � −θmω2eiωtei�Ψ�ϕ� (14)

With prescribed pitch and plunge amplitudes from the Theodorsen
theory and the phase shift angles determined in the previous sections,

the aim is to determine a surge amplitude σ that results in lift

cancellation with the best agreement to constant freestream velocity

and incidence angle. The best agreement is defined as the lowest

change in lift, through root-mean-squared error (RMSE)with respect
to the static lift. The expressions for h and θ and their respective time

derivatives from Eqs. (7) and (14) are substituted into the lift Eq. (13)

and arranged where Lg;pitch�t� � Lg;plunge�t� � Lg;surge�t� � Lg;

surge–plunge; coupled�t� � Lg;surge–pitch;coupled�t�. The result of the

real parts followed by the imaginary parts are

θm�Ccos�Ψ�ϕ�−Bsin�Ψ�ϕ��−hm�Ecosϕ�Dsinϕ�
� σθm�L� 2�− σθm��Scosωt�R sinωt�cos�Ψ�ϕ�
� �Rcosωt−S sinωt� sin�Ψ�ϕ��
− σhm��H cosωt�Dsinωt�cosϕ��Dcosωt−H sinωt� sinϕ�

(15)

θm�Bcos�Ψ�ϕ��Csin�Ψ�ϕ���hm�Dcosϕ−Esinϕ�
�−σθmK−σθm��−Rcosωt�Ssinωt�cos�Ψ�ϕ�
��Scosωt�Rsinωt�sin�Ψ�ϕ��
�σhm��Dcosωt�H sinωt�cosϕ��Hcosωt�Dsinωt�sinϕ�

(16)

where the following coefficients have been maintained from the

Theodorsen theory section:

B � k� 2G� 2k

�
1

2
− a

�
F C � ak2 � 2F − 2k

�
1

2
− a

�
G

D � 2
k

b
F E � k

b
�k� 2G�

Additionally, the following coefficients are maintained from the

Greenberg surge–plunge theory:

K � −k − 2G − 2σG cosωt − 2σF sinωt

L � 2F� 2σF cosωt − 2σG sinωt

The new coefficients introduced to this section are

H�2
k

b
G R�k�1�θm���1−2a�kF�2G S��1−2a�kG−2F

(17)

The surge-related components have been kept on the right-hand

side of Eqs. (15) and (16) to demonstrate that when the surge

amplitude is equal to zero, σ � 0, the right-hand sides are equal to

zero. This eliminates the need for a surge–plunge phase angle rela-

tionship settingϕ � 0. This reduces Eqs. (15) and (16) toEqs. (4) and
(5)when the remaining pitch contributions are subtracted to the right-

hand side. When σ � 0,

θm�C cos�Ψ� ϕ� − B sin�Ψ� ϕ�� − hm�E cosϕ�D sinϕ� � 0

θm�B cos�Ψ� ϕ� � C sin�Ψ� ϕ�� � hm�D cosϕ − E sinϕ� � 0

And with ϕ eliminated, setting ϕ � 0,

θm�C cos�Ψ� 0� − B sin�Ψ� 0�� − hm�E cos�0� �D sin�0�� � 0

θm�B cos��0� � C sin�Ψ� 0�� � hm�D cos�0� − E sin�0�� � 0

Observing that cos�0� � 1 and sin�0� � 0, and rearranging,

Eqs. (15) and (16) reduce to Eqs. (4) and (5):

hmE � �C cosΨ − B sinΨ�θm
−hmD � �B cosΨ� C sinΨ�θm

Further observation of Eqs. (15) and (16) shows that there are surge

amplitude parameters that are contained in the K and L coefficients

that are second-order surge amplitude contributions. With K and L
expanded and the left-hand side of Eqs. (15) and (16) moved to the

right-hand side as a consequence of the equivalence method, the real

and imaginary parts take the formof a quadratic equationwith σ as the
quadratic variable:
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σ2θm�2Fcosωt−2Gsinωt�
−σθm�−2F−2��Scosωt�Rsinωt�cos�Ψ�ϕ�
��Rcosωt−Ssinωt�sin�Ψ�ϕ��−σhm��Hcosωt�Dsinωt�cosϕ
��Dcosωt−Hsinωt�sinϕ��θm�Ccos�Ψ�ϕ�−Bsin�Ψ�ϕ��
−hm�Ecosϕ�Dsinϕ��0 (18)

σ2θm�2Gcosωt�2Fsinωt�
−σθm�−k−2G��−Rcosωt�Ssinωt�cos�Ψ�ϕ�
��Scosωt�Rsinωt�sin�Ψ�ϕ���σhm��Dcosωt�Hsinωt�cosϕ
��Hcosωt�Dsinωt�sinϕ��θm�Bcos�Ψ�ϕ��Csin�Ψ�ϕ��
�hm�Dcosϕ−Esinϕ��0 (19)

Solving the quadratic equation (written in terms of x, y, and z, as a,
b, and c are already disposed) for Eq. (18) in terms of σ, where

x� θm�2Fcosωt−2Gsinωt�
y�−θm�−2F−2��Scosωt�Rsinωt�cos�Ψ�ϕ�

��Rcosωt−Ssinωt�sin�Ψ�ϕ��−σhm��H cosωt�Dsinωt�cosϕ
��Dcosωt−H sinωt�sinϕ�

z� θm�Ccos�Ψ�ϕ�−Bsin�Ψ�ϕ��−hm�Ecosϕ�Dsinϕ�

σ�
�
−y�

																	
y2−4xz

p 

�2x� (20)

A more time-intensive numeric RMSE minimization analysis to

determine the optimal surge amplitude for Eq. (13) is undertaken to

compare to the analytic solution of Eq. (20). The numeric solution is

achieved by sweeping through the surge amplitude for the range of

0.0–1.0 and determining the RMSE of the lift as it compares to the

static lift case. The result is shown in Fig. 2 with good agreement

between the analytical, real positive root, and numerical solution. The

numeric solution also shows that there is a relatively flat portion of the

curve, referred to as a robust zone, for the range of surge amplitudes

equal to 0.60–0.85, where the RMSE change is less than 10% from
the local minima.
The surge component of the reduced Greenberg lift Eq. (13) is

treated as the referencemotion that plunge and pitch are phase shifted
from. The surge abscissa in this formulation and experiments are zero
when the airfoil motion has been located in the typical manner where
the airfoil motion just begins to surge and advances into the flow at
t∕T � 0.0, followed by the motion retreat, surging away from the
flow starting at t∕T � 0.5. The static lift components have been
included in the total lift equivalence and cancellation cases in Fig. 3,
but have been left out of the individual component contributions to
show the construction and destructive interferences to visualize the
mean ordinate as zero. Figure 3 includes the individual components
of Eq. (13) as well as the combination of those components repre-
sented by the overall lift, Lg;reduced�t�.
The maximum dynamic lift from the left of Fig. 3, at a temporal

0.264,when comparedwith the same time of the right of Fig. 3 is over
90% negated in terms of dynamic deviation from static lift. The
remaining deviation from static lift is due to a couple of reasons.
First, the surge component is not purely sinusoidal, where the pure
plunge and pitch components are. This creates a need for compromise
between determining the surge magnitude factor for cancellation to
occur at both maximum and minimum surge lift values.
Secondly, at a lower lift magnitude scale, there is a small phase

shift between the surge–pitch and surge–plunge coupled compo-
nents. The pitch–plunge equivalence in opposition to surge was
chosen due to pitch and plunge having an identical frequency to
surge, as well as larger magnitude than the coupled surge–pitch and
surge–plunge elements for σ < 1. This similarly has a positive lift
amplitude effect for equivalence, where both pitch and plunge are
each approximately half the amplitude of surge. This maximizes the
positive sinusoid construction when constrained by the same param-
eters used for cancellation.

D. Quasi-Steady Normalized Lift

VanderWall andLeishman’s [18] evaluationof theGreenberg theory
[14] presented the assumptions that neglected the induced velocity flow
oscillation amplitude and describe a back-and-forth motion into and
away from the freestream. That does not necessarily represent an
oscillating freestream velocity and creates substantial inaccuracies
above σ � 0.4. Based on these assumptions a dynamic pressure cor-
rection in the direction of the flowmaycorrelate thedifferences between
analytical theories to the experimental results more accurately. A Reyn-
olds number of 40,000 is low when considering an airfoil, resulting in
high influence ofReynolds number effect and thick airfoil effectson lift.
A separation bubble or separation location (leading edge, midchord, or
trailing edge) plays a leading role in airfoil lift production for low
Reynolds numbers in unsteady flows [6,21].
The lift is normalized by static lift to observe the lift produced by

the unsteady combined motions. The lift may also be normalized by
the Greenberg lift as the unsteadiness goes to zero. This is a quasi-
steady normalization that allows the unsteadiness of the lift to be
quantified. In the work of Van der Wall and Leishman [18], Theo-
dorsen’s theory is extended to also have a periodic freestream veloc-
ity. This assumed a constant shed wake velocity relative to the airfoil
and omits any time-varying effects from the wake integrals. The
normalized quasi-steady term from Van der Wall and Leishman for
the extended periodic freestream Theodorsen theory is Eq. (21).

Lqs�t�
L0

� �1� σ sinωt�2 (21)

These assumptions are analogous to k → 0, F�k� → 1, and
G�k� → 0. If these assumptions are applied to the reducedGreenberg
theory, Eq. (13), the result is Eq. (22).

Lqs;g�t�
L0

� �σ2 � σθm��cos 2ωt� i2 cosωt sinωt�

� �2σ � θm��cosωt� i sinωt� � 1 (22)

Fig. 2 An example finding of Eq. (13), minimum RMSE for a numeric
surge sweep and Eq. (20), an analytic solution for k � 0.10, θm � 3.0°,
hm � 0.263c,� 0 to 1, Ψ � 84.28°, ϕ � 85.99°.
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When the pitch amplitude θm is set to zero and the real components

of Eq. (22) are considered after simplification (with the result shifted

right by π∕2 to conform to the typical abscissa described above),

Eq. (22) simplifies to Eq. (21). If the pitch amplitude is neglected,

then the normalized quasi-steady Eq. (21) is also valid for the Green-

berg theory.
If θm is not set to zero, the result of Eq. (22) shifted right by π∕2 to

conform to the typical abscissa with only the real parts considered,

Eq. (22) becomes Eq. (23).

Lq;g�t�
L0

� −�σ2 � σθm� cos 2ωt� �2σ � θm� sinωt� 1 (23)

This expression becomes increasingly complicated when a phase

shift in pitch is considered. When investigated, it was observed that

neither Eq. (23), nor a pitch phase shift consideration changed the

trends of a quasi-steady normalization of the lift. It is also noted that

unlike the translational velocities of surge and plunge, pitch rate does

not change each chord element location at the same velocity, as each

chordwise position changes distance from the pivot location. However,

as k → 0, for the quasi-steady case, the pitch rate and acceleration are
also zero, limiting the significance of a change in rotation along

the chord.
The normalized quasi-steady lift in Eq. (21) is maintained as being

useful in demonstrating unsteadiness through the quasi-steady nor-

malization of lift. Avalue of one indicates that the airfoil is behaving

as if it were steady. Above one indicates that the unsteadiness is

increasing lift production, and below one indicates that the unsteadi-

ness is decreasing lift compared with a static lift case at constant

freestream and incidence angle. The normalized lift by quasi-steady

lift becomes Eq. (24).

Lg�t�
Lqs�t�

� Lg�t�
L0

L0

Lqs�t�
� Lg�t�

L0

1

�1� σ sinωt�2 (24)

IV. Experimental Setup

The experimental setup method is designed to meet the unsteady
aerodynamic characterization of the flowfield through dye tracking
visualization, as well as load quantification through load cell lift and
pitching moment histories. This was accomplished with the follow-
ing motion system method and experimental techniques.

A. Water Tunnel

The experimental equipment employed to create and measure
unsteady aerodynamics was conducted with a free-surface water
tunnel at the North Carolina State University. The water tunnel
contains approximately 13,250 liters of water at 0.61 mwater height.
Freestream velocity is generated by a marine propeller housed in a
pipe under the test section. The propeller is powered by a 10 HP
Baldor Reliance Super E Motor EM3774T controlled by an ABB
ACS355 variable frequency drive. Thewater is propelled through the
diffuser and settling chamber through progressive turbulence screens
and accelerated through the contraction into the test section.
The test section length of 2.44m is long enough for motion inputs of

low reduced frequencies, k � 0.05 and σ � 0.5. The leveraged advan-
tage of a water tunnel is that k and σ are independent variable inputs at
this facility.Conversely, these parameters for a shutteredwind tunnel are
coupled and cannot be treated individually. For an equivalent Reynolds
number comparison, with only surging motions considered, the airfoil
motion would need to be faster at much greater motion amplitudes in a
wind tunnel compared to a water tunnel. Although not impossible, this
would be difficult and limit the range of reduced frequencies greatly.
These differences allow for more ease in camera tracking of the test
article for dye visualization as well as a greater range of cases.
The water tunnel test section is constructed of three glass panels

with dimensions for the two vertical sides of 0.71 m height by 2.44m
length and a floor panel of 0.81 m width by 2.44 m length. There is
unobstructed viewing through the glass panels throughout the test
section for optical measurements. A 4.5:1 contraction produces free-
stream velocities from 0.15 to 1.0 m∕s with the average streamwise

Fig. 3 Normalized lift, equivalence (top left) and cancellation (top right), theory analytics for lift components of k � 0.25, θm � �6.0°, hm � �0.221c,
Ψ � 76.16°, ϕ � 85.40°, σ � 0.7. Followed by kinematics of equivalence (bottom left) and cancellation (bottom right).
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turbulence varying from 0.2% to 0.8%, increasing proportionally
with freestream velocity [20].

B. Motion System

The tunnel is equippedwith aH2Wmotion system controlled by a
Galil 4080 controller and Xenus XTL-230-36 amplifiers operated
using Galil Suite software. Custom programs downloaded into the
controller determine the motions of the test article with respect to the
freestream velocity. The controller uses the amplifiers to change
magnetic fields on the various rails and rotary motor with location
encoder feedback to meet the specified programmed motion for the
experiment. If the motors exceed a given position tolerance, an error
occurs and the test is stopped.
A dual-axis gantry denoted twice by “A” on the right in Fig. 4 is

powered by twoH2Wsingle rail linear stages. This dual-stage allows
the test article to surge into and away from the freestream velocity as
the flow exits the contraction from left to right. The gantry is placed
20 cm above the free surface water line and spans the entire length of
the test section. The gantry has a maximum continuous output of
294 N and a peak output of 880 N.
Beneath the test section floor is a H2 W dual rail linear stage

(DRS), denoted by “B,” alignedwith the centerline of the test section.
The DRS rail system is designed where motion inputs of the test
article can be tracked using cameras and other hardware during the
specified motion. The DRS stage spans the entire length below the
test section and has a continuous output of 44 N.
A second dual rail stage spans thewidth of the test section, denoted

by “C,” allowing the test article to plunge. The rotary motor, denoted
by “D,” allows the test article to pitch. The motion system uses RLS
LM 13 linear magnetic encoders as feedback position sensors with a
resolution of 1 μm for the linear rails and a rotary encoder with
1∕125th of a degree resolution for the rotary motor.

C. Measurement and Data Acquisition Equipment

Experimental characterization techniques to measure the properties
of unsteady aerodynamics employed are load cell mean force mea-
surements, with respect to the quarter chord, and dye visualization.
The load cell is an ATI Industrial Automation Delta sensor to

measure force and torque with calibrated limits of 660 N with
1∕8 N resolution in both the X and Y directions, representing drag
and lift, creating a plane parallel to the bottom of the test section. The
torque calibration range is 60N·min all threeCartesian directions and
is measured with a separate flexure than force with 16-bit DAQ,
National Instruments, resolution. The load cell is the single point of
connection between the rotary motor and the airfoil test article. The
vertical orientation and single point of connection of the mounted
airfoil cause the rotary motor limitation of 53 N·m to be the limiting
torque magnitude. This was used to verify the maximum allowable
applied forces to determine the maximum airfoil chord and pitch
angle. This led to the load cell having been sized accordingly for a
0.146 m chord with 20° pitch maximum with single-axis overload
conditions far exceeding the applied loads. This is a maximum static
blockage of 6.4% that only momentarily occurs during dynamic
motions.

One side of a six-axis load cell ATI Delta is mounted to the bottom
of the rotary motor. The other side of the load cell is connected to the
vertically oriented airfoil test article to measure aerodynamic forces
and pitching moment.
The airfoil is constructed from two internal spanwise CFRP tubes

approximately at 1∕3 × chord and 2∕3 × chord, supporting four wire-
EDM stainless steel profiles at 3∕4 × span, 1∕2 × span, 1∕4 × span,
and the top. The bottom profile is made of chlorinated polyvinyl
chloride (CPVC) to prevent scratching the glass during the mounting
process. The skinof the airfoil ismadeof two layers of vacuum-molded
glass-fiber reinforced plastic (GFRP).
Twenty-five cycles sampled at 1 kHz of eachmotionwere recorded

to measure an accurate sample representation for the load cell data
collection. The first three and the last two cycles were not used to
eliminate potential influence from initial startup and completion of
the oscillations, resulting in 20 total used cycles and then filtered at 5
times the motion frequency using a fourth-order Chebyshev II low-
pass filter inMATLAB.A tare of the systemmotionwas performed to
isolate the aerodynamic and noncirculatory forces.A parameter study
of reduced frequency of 0.10–0.25 in increments of 0.05 was con-
ducted for a 0.146 m chord and 4.2-aspect-ratio NACA 0018 airfoil.
An aspect ratio of approximately four has been used in several

water tunnel facilities. Aspect ratio and other experimental factors
such as gap effects, freestream turbulence, airfoil stiffness, and static
blockage are not entirely accounted for in the present experiment and
can vary broadly between experimental facilities. The experiment
does take measures to minimize the influence of these factors, but the
affects cannot be eliminated. The work of Visbal [22] is a clear
demonstration of how these factors can affect the flowfield of the
airfoil and corresponding force measurements.
The natural frequency of 5.4 Hz of the submerged airfoil assembly

was determined through fast Fourier transform of the lift force signal
when tapped with a soft mallet. The forcing frequency range of
0.06–0.15 corresponding to reduced frequency of 0.10–0.25 is over
an order of magnitude less than the natural frequency of the airfoil,
resulting in negligible airfoil bending.
The lowest value of k; 0.10, has been chosen to meet the surge

amplitude limitations of approximately 0.70 as found in the theory
analysis. The longitudinal airfoil displacement into and away from
the flow is dependent on the surge amplitude and reduced frequency.
The range of displacement is 0.0584–1.022 m corresponding to
bounds of k; 0.25 and σ; 0.10, and k; 0.10 and σ; 0.70. This reduced
frequency also remains relevant to thevalue of 0.10 that rotorcraftmost
experience, and for circulatory effects to be dominant. The pitch angle
amplitudes have been chosen to explore attached flow, trailing edge
separation, and leading-edge separation cases. Equivalent plunge
depths are determined by the Theodorsen theory, and a sweep of surge
amplitudes of 0.10–0.70 has been chosen. Themaximum surge ampli-
tude of 0.70was chosen to be relevant to thevalues that represented the
best cancellation while limiting the potential for reverse flow.
The dye visualization setup used multiple 10 V, 520 nm LED

diodes to create a horizontal sheet that illuminates a 2D plane of
the test section at half span of the airfoil wetted height. The beampath
of the diodes produced a 30° planar light sheet with 520-G-2 lenses.
This plane corresponds to the 0.33 m height of the leading-edge dye

Flow

Test Section

Fig. 4 Left: water tunnel model [20]. Right: test section with motion system rails and rotary motor.

ELFERING AND GRANLUND 4635

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

D
ec

em
be

r 
1,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
90

68
 



port with a 1.082mmdiameter that ejects Rhodamine 6G from aNew
Era NE-300 syringe pump that fluoresces orange when exposed to
this wavelength. The volumetric flow rate of dyewas 3.50 mL∕min,
equating to 0.06 m∕s velocity to be lower compared with the free-
stream velocity so as not to disturb the boundary layer. The dye was

mixed with half-and-half cream (density 1.02 kg∕m3). As the airfoil
is oscillated with given frequency and amplitude for a prescribed
motion, the camera and airfoil follow the same simultaneous surge
path to produce usable images at over 2 m in length for analysis.
The dye visualization simulates a 2D flow over the airfoil with the

submerged wingtip of the airfoils within 1 mm of the test section
floor. Mounted on the lower stage, as seen on the left of Fig. 5, below
the test section is a Photron Mini AX200 high-speed camera with a
Nikon NIKKOR 24 mm microlens. ATiffen orange 21 filter is used
with the dye visualization tracking with high-concentration Rhod-
amine-6G injection at 0.0041 g∕mL, which fluoresces orange from
the planar diode illumination shown in Fig. 6. Images are captured
throughout the entire oscillation cycle of the motion as the camera
track is simultaneously triggered and in synchronousmotion with the
longitudinal surging of the airfoil test article. A Keysight 33500B
function generator simultaneously triggered the DMC motion con-
troller and camera to synchronize the airfoil kinematics and dye
visualization images. A Tektronix AGF 3022B function generator
set the recorded camera frames per second (fps). Trigger delay is
constrained by the motion controller by 2 ms, which is less than 11%
of a phase angle of the fastest motion presented, and is considered
negligible. Images of the motion are captured throughout the surging
motion at 3 fps per phase angle using PFV Viewer software. The
pitching and plunging motions are not matched by the camera
system, where the images display the relative pitch–plunge motions
between the camera system and the NACA 0018 test article.

V. Results

A parameter study was considered for phase-shifted, sinusoidal
surge–pitch–plunge for the NACA 0018 airfoil at a freestream, mean

Reynolds number of 40,000. Parameters that were chosen are
reduced frequency k � 0.10–0.25 in increments of 0.05; pitch ampli-
tudeα � 3, 4, 6, and 8 deg; and surge of σ � 0.10–0.70 in increments
of 0.10. The corresponding plunge amplitudes were determined
from the pitch amplitudes with the Theodorsen equivalence theory.
Listed in Table 1 is a summary of the cases for equivalence. Table 1
represents cancellation as well, where hm and θm are the exact
negative of the tabulated values. The mean angle of attack αm is
always the positive value of θm. The plunge phase shifts are an
average value as this parameter is dependent on the surge amplitude.
This was deemed to be acceptable as the plunge phase shift changed
less than half of a degreewithin respective reduced frequency groups.
In this section, experimental comparison to theoretical predictions

ismade for normalized lift, and the discrepancies between the two are
observed and related to dye visualization boundary layer and vortex
shedding behavior. Inertial mass effects are subtracted from the load
cell measurements and had a maximum normalized lift value of
0.025. This value corresponds to the maximum surge results of cases
M-P, for k of 0.25 and σ of 0.70. The experiment is considered a
viscous flow at a low, mean Reynolds number. As such, turbulent
boundary layers, shear layer instability, leading-edge separation
vortices, and even simultaneous, multiple-chordwise vortex roll-up
and shedding occur. This is all in violation of the flat plate, potential
flow with trailing edge Kutta condition enforcement that formulates
the theory.
By enforcing the theoretical lift of the pitch and plunge ampli-

tudes to always be equivalent, the total-lift theoretical predictions
for surge–pitch–plunge are near identical for each pitch amplitude
as reduced frequency increases from 0.1 to 0.25. As a consequence,
the reduced frequency amplitude doubles the plunge displacement
scales by approximately half, whereas the plunge rate remains
nearly constant. This allowed for comparisons for each mean
angle-of-attack group across reduced frequencies for their respec-
tive surge amplitudes while maintaining consistent theoretical
predictions.

Vertical
Airfoil

Loadcell

Syringe
Pump

Fig. 5 Experimental NACA 0018 installed setup.

Vertical
Airfoil

Fig. 6 Left: illumination design model [20]. Right: test section with airfoil and planar 520 nm illumination.

Table 1 Motion parameters

Case k θm, deg Ψ, deg hm∕c ϕ, deg σ

A 0.10 3.00 84.282 0.264 85.75 0.10–0.70
B 0.10 4.00 84.282 0.352 85.75 0.10–0.70
C 0.10 6.00 84.282 0.528 85.75 0.10–0.70
D 0.10 8.00 84.282 0.704 85.75 0.10–0.70
E 0.15 3.00 81.472 0.178 85.40 0.10–0.70
F 0.15 4.00 81.472 0.237 85.40 0.10–0.70
G 0.15 6.00 81.472 0.356 85.40 0.10–0.70
H 0.15 8.00 81.472 0.474 85.40 0.10–0.70
I 0.20 3.00 78.748 0.135 85.60 0.10–0.70
J 0.20 4.00 78.748 0.180 85.60 0.10–0.70
K 0.20 6.00 78.748 0.271 85.60 0.10–0.70
L 0.20 8.00 78.748 0.361 85.60 0.10–0.70
M 0.25 3.00 76.156 0.110 86.72 0.10–0.70
N 0.25 4.00 76.156 0.147 86.72 0.10–0.70
O 0.25 6.00 76.156 0.221 86.72 0.10–0.70
P 0.25 8.00 76.156 0.294 86.72 0.10–0.70
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A. Reduced Frequency and Surge Amplitude Trends

The deviations from a smooth, sinusoidal cycle for lower reduced

frequencies in Fig. 7 are indicative of trends that occur throughout the

parameter study investigated. At lower reduced frequencies, viscous

separation effects and circulation are dominant, and allow more

influence on the experimental lift when the Kutta condition is vio-

lated by boundary-layer separation and vortex roll-up that is followed

by shedding. As the reduced frequency increases over the test range

of 0.10–0.25, the circulatory effects become less dominant as the

experimental results are influenced more by noncirculatory effects.

This interaction results in lift behavior less influenced by boundary-

layer attachment.
The influence of surge amplitude changes the strength and struc-

ture of these viscous effects as the dynamic pressure rate changes due

to an increased motion frequency with respect to the freestream

velocity. An absence in high surge amplitude findings was observed

by Strangfeld et al. [9], testing to σ of 0.5. The analytical results

indicated a maximum cancellation occurring at approximately 0.7,

which motivates the discussion of the effect of the range of surge

amplitudes in Fig. 8.
Figure 8 shows a time lapse of a cancellation case corresponding to

the normalized lift shown in Fig. 9b, with constant parameters for each

column, except for surge amplitude. The columns from left to right

show surge amplitude of σ � 0.1; 0.4, and 0.7. The horizontal lines in
Fig. 8 denote a vertical plunge displacement reference datum for each

airfoil dye visualization image for an overall amplitude hm of 0.356c.
The nondimensionalized time shown is a single, ensemble-averaged

period, where the force andmotion are cyclic and time 0.000 is equal to

time 1.000. The first three cycles are omitted to ensure that startup

conditions have past before the images are recorded.
The changes due to surge amplitude are most apparent in thewake

structure and height when investigating times near the peak motion

deviations, as well as the separation location as the instantaneous

velocity approaches that of the freestream velocity. Consider the row

of Fig. 8 at t∕T � 0.375. When σ � 0.1, with a negative, normalized

lift, the wake has discernable, alternating shed vortices from both the

upper and lower surfaces with the airfoil at approximately zero angle

of attack. In contrast, σ � 0.4, compared with the lower surge

amplitude, has a turbulent wake structure with a compressed wake

height due to increasedmomentum. The σ � 0.7 case has these same

characteristics, but even more pronounced than that of the middle

amplitude of σ � 0.4.
At the negative, surge motion peak, t∕T � 0.750 and σ � 0.1, the

wake has regained a periodic vortical structure and fully turbulent

boundary layer. The σ � 0.4 case has a less coherent vortical wake

and trailing edge separation that moved from the trailing edge toward

the leading edge along the upper surface as time progressed. The

separation progression at t∕T � 0.750 occurred at approximately

the three-quarter chord. The σ � 0.7 case boundary layer has begun
to stagnate on the upper surface where the dye has coalesced and

begun to form a leading-edge vortex (LEV). The significant loss of

momentum causes a considerable lift deficiency that is not captured

by the theory.
At t∕T � 1.00, the airfoil is at rest in the surge axis with respect to

the freestream velocity for all three cases, but the surge accelerations
are different magnitudes. Turbulent boundary-layer separation is still

occurring at this time step for all three cases, and progresses toward
earlier reattachment with respect to time as the surge amplitude
increases. The earlier, normalized time of boundary-layer attachment

combined with the increased acceleration and dynamic pressure
lends to the differences of the advancing and retreating phase obser-

vations described above as surge magnitude increases.

B. Theoretical and Experimental Equivalence

The lift-based equivalence that is investigated here is the construc-

tion of the primary in phase lift components due to surge–pitch–
plunge. The amplitudes of each case are listed in Table 1, where the
lift amplitudes of pitch and plunge are equivalent to cancel the

secondary harmonics that arise due to surge coupling. The surge
amplitude is then swept from 0.1 to 0.7, to investigate a range that

corresponds from near zero up to the robust zone found in the
analytical approach.
At the low surge amplitude of 0.1, reduced frequency of 0.1, and

high pitch amplitude of 8.0° the unsteady effects are most readily

observed. Figure 10 corresponds to a part of the advancing phase of
the experimental σ � 0.1 case for Figs. 11a and 11b. The times

selected in Fig. 10 represent key differences between theory and
experiment in the normalized lift as it is affected by the viscous

separation behavior of the boundary layer.
Note that t∕T � 0.117 when the separation of the turbulent boun-

dary layer began to translate along the upper surface from the trailing
edge toward the leading edge. This is a relatively small change in the

rise of the lift, but it begins the advancing phase boundary-layer
effects. This type of separation continued until approximately three-
quarter chord, when local boundary-layer thicknessminima occurred

at the midchord at t∕T � 0.186. The minima continued toward the
leading edge along the upper surface and partitions the previous

separation zone from an LEV formation reaching to the midchord.
The leading-edge to midchord boundary LEV continued to form

from t∕T � 0.248 to t∕T � 0.270, and temporarily stopped the lift
from decreasing. By t∕T of 0.28, the LEV has absorbed themidchord
to trailing edge zone and has fully separated. At this time the lift has

momentarily stabilized and is termed “lift plateau,” where the quasi-
steady normalized lift in Fig 11b reveals that the lift is almost

behaving as if it were steady, with a value just above one. The lift
plateau ended at t∕T � 0.28 as the LEV shed. The Kelvin–Helm-

holtz shear layer instability that is seen at t∕T � 0.28 formed and
dissipated as the airfoil continued to reduce in lift magnitude and
plunged down and away from the separation.
The boundary layer for the reduced frequency of 0.10 remained

separated until a reattachment time of t∕T � 0.655 occurring while
the airfoil surged away from the flow and plunged upward. This is

Fig. 7 Case C, G, K, and O lift equivalence over reduced frequency range 0.10–0.25 for θm � 6.0° for surge amplitudes 0.1, 0.4, and 0.7.
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also when renewed trailing edge separation began. At lower surge

amplitude this marked a change from separated lift behavior to that of

attached flow that is similar to the theoretical prediction through the

rest of the retreating phase. This is seen in Fig. 11a from this time until

the end of the cycle. This similarity continues to break down as the

surge amplitude increases. In contrast, as the surge amplitude reaches

0.7 the boundary layer does not reattach until the advancing phase of

the cycle is reached again.

Fig. 9 Case C, G, K, and O lift cancellation over reduced frequency range 0.10–0.25 for θm � −6.0° for surge amplitudes 0.1, 0.4, and 0.7.

c) = 0.7=b) = 0.4=a) = 0.1=

t/T = 0.000

t/T = 0.125

t/T = 0.250

t/T = 0.375

t/T = 0.500

t/T = 0.675

t/T = 0.750

t/T = 0.875

t/T = 1.000

t/T = 0.000

t/T = 0.125

t/T = 0.250

t/T = 0.375

t/T = 0.500

t/T = 0.675

t/T = 0.750

t/T = 0.875

t/T = 1.000

t/T = 0.000

t/T = 0.125

t/T = 0.250

t/T = 0.375

t/T = 0.500

t/T = 0.675

t/T = 0.750

t/T = 0.875

t/T = 1.000

Fig. 8 Dye visualization for case G lift cancellation on the effects of surge amplitude of σ � 0.1, 0.4, and 0.7.
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It is shown in comparison of Figs. 11–12 that the separation effects

at lower reduced frequency have significantly more influence on the

lift behavior than at higher reduced frequencies. A large difference is

that the peak lift no longer truncates before the peak motion velocity

is reached as occurred in Fig. 11.

The normalized lift scale in Fig. 12 has been kept the same as

Fig. 11 for direct comparison. The corresponding dye visualization

for Fig. 12 has similar boundary-layer structures that occur as the

reduced frequency has increased from 0.10 to 0.25, but do not cause

the same effect on normalized lift behavior. From reduced frequency

of 0.10 to 0.25 the LEV formation does not occur until a change in

t∕T of 0.05 later. This is not a large time change, and it is thought that

the change in normalized lift behavior is due to the increasing

dominance of noncirculatory effects and dynamic pressure.

The other distinct difference with the increase in reduced fre-

quency is that reattachment in the retreating phase does not occur

until much later. This is after t∕T of 0.75 for the surge amplitudes
equal to and below 0.4.
As the surge amplitude increases to 0.7 the boundary layer does not

reattach with trailing edge separation until t∕T � 0.115. Just before
this time the separation location began at approximately three-quarter
chord and continued to move toward the trailing edge until the new
cycle’s midchord local boundary-layer thickness minima occurred
(similar to Fig. 10, t∕T � 0.186). The separation location then
moved along the upper surface toward the leading edge until the
separated LEV dissipated, just before a shear layer formed and
dispersed. As the airfoil plunged upward, another weak LEV formed
and advected along the upper surface, causing the small retreating
phase peak in lift for surge amplitude of 0.7. This LEVdoes not occur
at the lower surge amplitudes due to some amount of leading-edge
reattachment occurring in the retreating phase.

C. Theoretical and Experimental Cancellation

The differences between theory and experiment for cancellation
are less pronounced than for the respective equivalence cases of the
same parameters, with the exact negative pitch and plunge ampli-
tudes. The cancellation motion is considerably different from a more
typical motion like the previous equivalence motions discussed. The
negative lift peak amplitudes of pitch and plunge are placed in phase
by the angleΨ; and then in phasewith themaximum surge lift peak by
the angle, ϕ demonstrated if Fig. 3b.
Maximum lift now occurs in the retreating phase instead of the

advancing phase (with the exception of surge amplitude of 0.7 and
pitch amplitudes of 3°, as shown in Fig. 13). The retreating phase also
contains the significant vortex roll-up and shedding (if it is present for

t/T = 0.117 t/T = 0.186

t/T = 0.248 t/T = 0.280

Fig. 10 Short time lapse of case D dye visualization for lift equivalence
for σ � 0.

Fig. 11 Case D lift equivalence and kinematics for theory and experimental normalized lift for surge amplitudes σ � 0.1, 0.4, and 0.7.
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the parameter case). Despite never reaching a negative angle of

attack, the advancing phase suction side of the airfoil appears to

switch to the lower surface based on lift force measurements. This is

due to plunging upward and pitching down as the airfoil surges

forward. The experimental negative lift peaks increased as the surge

amplitude increased for the 6° and 8° pitch amplitude groups, and not

the lower 3° group. This is shown when comparing Figs. 9 and 13,

corresponding to the 3° and 6° groups, respectively. This is the

opposite trend from what the theoretical analysis predicts for the 6°

and 8° groups. This lends itself to the theory analysis of the advancing

phase for cancellation having an agreeable, predicted trend the more

the boundary layer remains attached.

Figure 14 is a dye visualization cycle that corresponds to the

normalized cancellation lift plot of Fig. 13d. At t∕T of 0.000 the

Fig. 12 Case P normalized lift equivalence and kinematics for theory and experimental normalized lift for surge amplitudes, σ � 0.1, 0.4, and 0.7.
k � 0.25, θm � 8.0°, hm � 0.294c, Ψ � 76.16°, ϕ � 86.2°.

Fig. 13 CaseA, E, I, andM lift cancellation theory and experiment for the reduced frequency range of 0.10–0.25 for θm � −3.0° for surge amplitudes 0.1,

0.4, and 0.7.
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airfoil has increased relative surge velocity back to freestream

magnitude from the proceeding cycle’s retreating phase. The airfoil

begins to pitch down, plunge up, and surge forward. As the increase

in surge velocity slows and reverses direction at t∕T of 0.25, the

boundary layer and wake thin until the retreating phase is reached.

As the surge velocity slows, the boundary-layer thickness expands

as the airfoil moves through t∕T of 0.75. At t∕T of 0.75 the relative

surge velocity of the airfoil is only 30% of the freestream velocity.

The loss in momentum does not advect the boundary layer down-

stream sufficiently quicker than the airfoil retreating surge motion.

However, the change in momentum is not large enough to cause the

wake to be in front of the leading edge, indicating no reverse flow.

By t∕T of 0.875 the airfoil has almost regained enough momentum

to advect the thicker boundary layer into the wake as the cycle is

completed.

This cycle of dynamic pressure stretches and compresses the

boundary-layer thickness and causes normalized lift magnitude

differences between theory and experiment. The trend of increased

lift in the advancing phase as surge amplitude increases is intact while

the boundary layer does not have any large-scale separations.

t/T = 0.000 t/T = 0.125 t/T = 0.250 t/T = 0.375

t/T = 0.675 t/T = 0.750 t/T = 0.875 t/T = 1.000

Fig. 14 One cycle time lapse of dye visualization for case M lift cancellation for σ � 0.7, k � 0.25, θm � −3.0°, hm � −0.135c,Ψ � 76.16°, ϕ � 86.2°.

t/T = 0.675t/T = 0.500 t/T = 0.750

Fig. 15 First half of the retreating phase time lapse of dye visualization for case P lift cancellation of σ � 0.7, k � 0.25, θm � −8.0°, hm � −0.294c,
Ψ � 76.16°, ϕ � 86.72°.

Fig. 16 Case D normalized lift cancellation and kinematics for theory and experimental normalized lift for surge amplitudes σ � 0.1, 0.4, and 0.7.
k � 0.10, θm � −8.0°, hm � −0.704c, Ψ � 84.28°, ϕ � 85.75°.

ELFERING AND GRANLUND 4641

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

D
ec

em
be

r 
1,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
90

68
 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.J059068&iName=master.img-015.jpg&w=353&h=380


As the boundary-layer behavior changes with increased pitch and
plunge amplitudes, so too does the effect on the normalized lift.
Figure 15 shows dye visualization for the first half of a retreating
phasewhere large separation occurs. Just as the surge retreating phase
at t∕T of 0.500 begins, the trailing edge separation ends, and the
boundary-layer separation location moves along the upper surface
toward the leading edge. This causes aweak vortex roll-up to occur at
approximately three-quarter chord. The thin boundary layer just
upstream of this vortex appears to cause a pressure difference suffi-
cient enough to form a stronger midchord vortex formation as the
airfoil continues to slow down with respect to the freestream, plunge
down, and pitch up.
These motions and presence of downstream vortices continue to

help sustain the existing vortex core and promote a new LEV for-
mation. By t∕T of 0.675 the weak three-quarter chord vortex has
nearly dissipatedwhile the airfoil experiences a local liftminima. The
LEV continues to become larger while the midchord vortex weakens
and becomes less coherent. By t∕T of 0.750 the midchord vortex has
almost completely advected downstream along the upper surface.
The LEV separates and advects downstream as a shear layer insta-
bility, lasting approximately t∕T of 0.05, occurs through the end of
the cycle and the boundary layer reattaches with trailing edge sepa-
ration at t∕T of 0.110.
Cancellation lift plateaus occur in the retreating phase with lower

reduced frequencies and separated flows. Similar normalized lift
plateau behavior occurred in the advancing phase of the equivalence
cases. Despite the similar effect on normalized lift behavior, the
boundary-layer separation location along the upper surface from
trailing edge to leading edge can be very different between the
cancellation and equivalence cases. This is demonstrated by the
midchord separation vortex that only appeared in cancellation cases,
Fig. 15 being an example case.
Figure 16b demonstrates that the halt in lift decline representing

the plateau requires a quasi-steady normalized lift just above one. As
the surge amplitude increases, the normalized lift plateau becomes a
concave, local minima until σ of 0.6. Although the normalized lift
behaviors for surge amplitudes of 0.1 and 0.4 are quite different, the
unsteady behaviors in the quasi-steady plot are approximately the
same magnitude of 1.5. The quasi-steady normalized lift in Fig. 11b
for the equivalence cases is also approximately the same magnitude
of 1.5 when the normalized lift plateaus occur. This is consistent
throughout the parameter study, where the trend is that as the reduced
frequency increases, the quasi-steady normalized lift falls below the
magnitude of 1 and does not cause lift plateaus.

VI. Conclusions

The closed-formGreenberg theory of unsteady lift for surge–pitch–
plunge oscillations remains attractive due to being a linearized pre-
dictive method for a nonlinear problem. The theory is often applied to
two-dimensional aerodynamics that are well outside of the constraints
of flat plate potential flow (which assumes fully attached flow, flat plate
chord line boundaries, a trailing edge Kutta condition, and planar
wake). Further simplifications are implemented in the Greenberg
theory to achieve a closed-form solution. The assumptions of uni-
form velocity perturbation along the chord line and the use of high
frequency in thewake integrals to achieve oscillatorywake formswere
made, which effectively limits the theory to small surge amplitude
approximations.
Here, two types of surge–pitch–plunge oscillatory motion are

considered: equivalence and cancellation. The lift components for
cancellation were chosen to build on the pitch–plunge Theodorsen
solution by McGowan. With pitch and plunge having equivalent
magnitude, the surge amplitude that would cause the most cancella-
tionwas determined. Thiswas done analytically by first introducing a
phase angle ϕ between the two translating motions of surge and
plunge while excluding pitch. With the average, time-dependent
surge–plunge phase angle determined, the pitch components were
reconsidered in a reduced Greenberg theory that only includes the
primary lift and secondary coupled terms. ϕ is a commutative phase
bridge between surge–plunge and pitch–plunge to equate the phase

shift between surge and pitch, represented by Ψ� ϕ. With both
phase angles defined, a closed-form theory for cancellation between
surge–pitch–plunge was derived.
The Greenberg theory predictions for lift-based equivalence and

cancellation were more agreeable to flow conditions that were closer
to attached flow with trailing edge separation at lower amplitude
rates. As the reduced frequency increased to 0.25, the circulatory
effects became less dominant as noncirculatory effects increased. It
was observed that the theory overpredicts the phase shift in lift that
occurs due to an increase in reduced frequency.
Despite the violation of the Kutta condition and massively sepa-

rated LEVs, the theory did hold some agreement to experimental lift.
The differences in momentum for lift-based equivalence and cancel-
lation create unsteady flow structure similarities between the two
motion types’ advancing and retreating phase motions.With increas-
ing surge amplitude, the advancing phase momentum gain amplifies
the influence of these flow structures on the experimental, normalized
lift, whereas the momentum loss in the retreating phase reduces this
influence. Based on these observations, even when the low inertial
Reynolds number of 40,000 is considered, the closed-form Green-
berg theoretical analysis presented in this work is a suitable first-step
approximation method for airfoil lift behavior in the case of sinusoi-
dal combinations of surge–pitch–plunge lift-based equivalence and
cancellation.
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