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Abstract— Numerous mobile systems face the challenge of
simultaneously exploring and exploiting a stochastic, spatiotem-
porally varying environment. The present work focuses on the
development of an adaptive control strategy that fuses Gaussian
process modeling and receding horizon control to ideally
manage the tradeoff between exploration (i.e., maintaining an
adequate map of the resource) and exploitation (i.e., carrying
out a mission, which consists in this work of harvesting the
resource). The use of a receding horizon formulation aids in
the consideration of limited mobility, which is characteristic of
dynamical systems. In this work, we focus on an airborne wind
energy (AWE) system as a case study, where the system can vary
its elevation angle (tether angle relative to the ground, which
trades off higher efficiency with higher-altitude operation) and
flight path parameters in order to maximize power output in
a wind environment that is changing in space and time. We
demonstrate the effectiveness of the proposed approach through
a data-driven study on a rigid wing-based AWE system.

I. INTRODUCTION

In recent years, many commercial and research institutions
have been working in the area of airborne wind energy
(AWE) systems [1]. These systems replace conventional
towers with tethers and a lifting body to reach altitudes
that are inaccessible with traditional wind turbines, and can
execute high-speed crosswind flight to dramatically enhance
power output (see [2], [3], [4], [5], [6]). These systems
can either generate energy via on-board rotors or through
cyclic spooling motion, where tether is reeled out under
high tension, in crosswind flight, and reeled in under low
tension, often with crosswind flight suspended. In either
case, the majority of the literature on AWE systems is
focused on optimization of the crosswind path in determin-
istic wind shear profiles and robust control, often in the
presence of turbulence (see [7], [8], [9], [10], [11], [12]).
The authors of [8] use iterative learning to optimize the
width and height of the crosswind path while operating
at a constant mean altitude in realistic flow, whereas the
authors of [9] demonstrate robust path tracking in artificially
generated random wind conditions. Similarly, the authors of
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[10] provide a means to maximize power generation in the
presence of a deterministic mean profile superimposed with
random turbulence. The authors of [13] perform an offline
optimization of mean elevation angle and tether reel-out
speeds as functions of wind speeds. However, optimization of
mean elevation angle (consequently the operating altitude) in
spatiotemporally varying, partially observable wind profiles
is a problem that has not been addressed in the crosswind
kite literature. This problem is particularly challenging in the
case of partial observability, where the AWE system only
has knowledge of the power output at its present location,
for its present flight path parameters, thereby leading to a
tradeoff between exploration (i.e., maintaining an accurate
map of wind speed/power output as a function of location
and flight path parameters) and exploitation (i.e., operating
at the estimated optimal location and flight path parameters).

On the other hand, optimization of operating altitude in
spatiotemporally varying, partially observable wind profiles
has been researched in the context of lighter-than-air AWE
systems that do not execute crosswind flight, like the Altaeros
BAT [14], where Gaussian Process (GP) modeling and
Bayesian optimization (BO) [15] has been utilized to max-
imize power generation (see [16], [17], [18]). The authors
of [16] and [17] use GP-based BO to optimize altitude in
realistic wind conditions, whereas the authors of [18] study
the impact of different sensor configurations on performance
using a persistence model for the wind profile.

At first glance, it may appear that the GP-based altitude
optimization techniques that have been applied successfully
in the case of non-crosswind systems represent a complete
work that can be directly extended to the optimization
of the elevation angle and flight path profiles of systems
that execute crosswind flight, along with other mobile sys-
tems that operate in spatiotemporally varying environments.
However, some critical and coupled limitations related to
dimensionality of the problem and dynamic considerations
preclude such a direct extension. Specifically, the aforemen-
tioned GP-based techniques require a database of all past
measurements. While very old measurements can be purged
without significant effect on performance (as in [16]), this
still does not represent a tenable solution in a dynamic
environment with great disparities in time scales, where
measurements are collected at every (short) time step. Fur-
thermore, computational requirements grow cubically with
the number of past time steps for which data is saved. For the
aforementioned non-crosswind applications, maintenance of



this database represented a computationally feasible strategy
due to two unique features of the problem. First, a simple
power curve could be used to express the power output
only as a cubic function of the local wind speed (up to
the rated wind speed). Because the local wind speed was
the only determinant of power output, a very slow sampling
rate, on the order of minutes, could be used for populating
the GP model database. Secondly, the optimization involved
only one decision variable – altitude. As soon as either of
these features cease to exist in an application, the use of
traditional GP techniques becomes infeasible for real-time
implementation. For AWE systems that execute crosswind
flight, power output is a complex function not only of wind
speed but also of the kite’s elevation angle and path geome-
try. As a result, effective adaptation algorithms require more
adjustments (and therefore faster sampling periods) relative
to the time scales associated with the wind. Furthermore,
several control variables can be modified to affect power
output, including elevation angle, tether length, and path
parameters. An ideal adaptation algorithm should be able to
be expanded in a computationally tractable way to address
the full suite of control variables.

In this work, we develop a GP-based model predictive
control (MPC) formulation that utilizes a Kalman filter
representation to characterize the GP through a finite and
fixed number of state variables. The use of a finite number
of state variables, rather than a growing database, leads to
real-time tractability and extendability to higher-dimensional
problems. The MPC formulation allows for consideration of
mobility constraints while also enabling the controller to look
far enough into the future to properly consider the long-
term implications of its exploration strategy. In this work,
we optimize the elevation angle of an AWE system with on-
board power generation, which executes crosswind motions.
We demonstrate the efficacy of the proposed approach on
this application, in addition to performing a parametric trade
study to quantify the impact of control design parameters on
performance.

II. PRELIMINARIES

In this section, we provide necessary preliminary infor-
mation regarding crosswind AWE systems, GP regression,
Kalman filtering, and spectral factorization of random pro-
cesses.

A. Crosswind Kite System
The crosswind AWE system considered in this work

consists of a kite connected to the base station via a single
flexible tether, as shown in Fig. 1. The system is designed
to execute power-augmenting crosswind motion (high-speed
figure-8 or circular patterns perpendicular to the prevailing
flow) to increase the apparent flow, thereby substantially
increasing power generation [19].

In general, AWE systems can generate power in either of
two ways:

1) On-board power generation, where turbine(s) attached
to the kite transmit energy to a base station via a
conductive tether [3], [4].

Fig. 1: Schematic of kite executing crosswind flight on a
figure-8 path with mean elevation angle, θ, and tether length,
lthr. Here the wind vector is aligned with the îŌ unit axis.

2) Ground based systems, such as those developed by
[5], [6], where a motor/generator winch system at the
ground spools out tether under high tension and spools
in tether under low tension, resulting in net positive
energy generation.

The case study in this paper focuses on on-board power
generation.

B. Gaussian Process Modeling
Gaussian process (GP) modeling is a machine learning

technique that is used to infer a latent function f(·) from the
data D = {(p1, y1), . . . , (pn, yn)}, where D is drawn from
a noisy process,

yi = f(p) + ε. (1)

Here, pi ∈ Rd are input vectors, yi ∈ R are observations
or outputs, and ε ∼ N (0, σ2

n) is zero-mean Gaussian noise
with variance σ2

n.
A GP model is fully defined by a mean function m(p) and

a covariance function k(p,p′), and is expressed as follows:

f(p) ∼ GP
(
m(p), k(p,p′)

)
where: m(p) = E[f(p)]

k(p,p′) = E[(f(p)−m(p))(f(p′)−m(p′))].

(2)

Given a data set of previously tested points denoted by
{pD = p1:n,yD = y1:n}, prediction mean and variance for
any candidate point p∗, are given by

f̄(p∗) = k(p∗,pD)K−1
D yD (3)

V[f(p∗)] = k(p∗,p∗)− k(p∗,pD)K−1
D k(pD,p∗), (4)

where KD is the covariance matrix between all input vectors
plus the measurement noise, i.e. KD = k(pD,pD) + σ2

nI .
Because of the matrix inversion in both Eqn. (3) and Eqn. (4),
the method scales as O(n3). In real-time control applications,
where measurements are collected at each time step, keeping
all the past measurements in memory and inverting KD



in a relatively short amount of time becomes intractable.
Thus, applying GP modeling directly to real-time control
applications is generally not feasible.

C. Kalman Filtering for Discrete-Time Linear System
Consider the following system:

sk+1 = Ask + wk

yk = Cksk + vk
(5)

where, at each time step k, sk ∈ Rn is the state vector,
yk ∈ Rm is the output vector, wk ∈ Rn and vk ∈ Rm are
i.i.d. zero-mean Gaussian random vectors with covariance
matrices Q ≥ 0 and R > 0, respectively. A ∈ Rn×n is
the state matrix and Ck ∈ Rm×n is the time-varying output
matrix. Typically, both the process and measurement noise
are assumed to be uncorrelated, i.e., E[wTk vh] = 0 ∀k,h.

The Kalman filter [20] applied to the system in Eqn. (5)
is described by the following recursive equations:

ŝk+1|k = Aŝk|k (6a)

Σk+1|k = AΣk|kA
T +Q (6b)

Lk+1 = Σk+1|kC
T
k (CkΣk+1|kC

T
k +R)−1 (6c)

ŝk+1|k+1 = ŝk+1|k + Lk+1(yk+1 − Ckŝk+1|k) (6d)
Σk+1|k+1 = Σk+1|k − Lk+1CkΣk+1|k (6e)

where ŝk|k and Σk|k represent the filtered estimate of the
state and the posterior error covariance, respectively; ŝk+1|k
and Σk+1|k represent the (one step) predicted state estimate
and error covariance, respectively; and Lk+1 is the Kalman
gain.

D. Spectral factorization of random processes
Consider a stationary random process f(t) with covariance

h(τ). From the Wiener-Khinchin theorem [21], it is known
that the power spectral density (PSD) of the process is equal
to the Fourier transform of its covariance, i.e.,

S(ω) , F [h(τ)](ω) (7)

Moreover, in the particular case when S = Sr is rational of
order 2r, using spectral factorization [21], its PSD can be
rewritten as Sr = W (iω)W (−iω) with

W (iω) =
br−1(iω)r−1 + br−2(iω)r−2 + . . .+ b0

(iω)r + ar−1(iω)r−1 + . . .+ a0
(8)

Finally, from realization theory, rational transfer functions of
the form of Eqn. (8) can be expressed as a continuous-time
state space representation [22] given by

ṡt = Fst +Gwt

zt = Hst.
(9)

III. KALMAN FILTERING OF GAUSSIAN PROCESS

To overcome the memory limitations of iterative GP
(specifically, the requirement that the GP model maintain
a complete database of all past measurements), the authors
of [23] developed a state-space representation of Gaussian
processes. This algorithm allows for recursive calculation
of the minimum variance prediction of a spatiotemporally

varying, partially observable process at time step k over
arbitrary spatial locations, under the following assumptions:

1) The process covariance is separable in space and time.
2) The temporal kernel is stationary and has a rational

power spectral density.
3) Measurements are collected over a finite set of spatial

locations.

A. Measurement space
Let X be the set of all spatial locations. The measurement

space is a set of spatial locations containing M points where
measurements can be collected and is defined as

XM , {x1, ...,xM |xi ∈ X}

Measurements are collected at discrete time instants tk =
kT , where T denotes the sampling time, from a time-
varying subset of the measurement space, namely M(k) ⊆
XM. Figure 2 shows an illustrative representation of the
measurement collection and prediction process.

Fig. 2: Illustrative representation of the measurement col-
lection and prediction process: the x-axis represents discrete
time instants while the y-axis represents the spatial domain
X. Red crosses highlight all the measurements locations
contained in XM. Black circles represent the locationsM(k)
where measurements are actually collected. The magenta star
represents a generic prediction location.

B. Covariance kernel properties
The covariance kernel, k(p,p′), of the GP is chosen such

that it is separable in space and time as follows:

k(p,p′) = g(x,x′)h(t, t′), (10)

where p = [x t]T , g(x,x′) is the spatial covariance, and
h(t, t′) is the temporal covariance. In addition, the temporal
kernel is stationary and its power spectral density Sr =
W (iω)W (−iω) is a rational function of order 2r, where
W (iω) can be written as Eqn. (8). It is worth noting that,



in cases when the PSD S(ω) of h(t, t′) is not rational it is
always possible to build a rational PSD which approximates
the true one. Different approximating methods can be used,
e.g., Taylor series expansion or Pade approximation.

C. Kalman regression on XM

Assuming that the GP covariance adheres to the form
given in Eqn. (10) and measurements are collected periodi-
cally at every tk = kT atM(k) spatial locations, then as per
[23], the process estimate, f̂k , [f(x1, tk), . . . , f(xM , tk)],
and corresponding error covariance, Σf , are given by

f̂k = K1/2
s Hŝk (11)

Σf = K1/2
s HΣkH

TK1/2
s (12)

where H , blkdiag(H, . . . ,H), Ks , g(XM,XM) is the
spatial covariance matrix, ŝk and Σk are the outputs of the
time-varying Kalman filter of Eqn. (6) applied to the discrete-
time system of Eqn. (5) with matrices (A,Ck, Q,R), where
A , blkdiag(F̄ , . . . , F̄ ), Q , blkdiag(Q̄, . . . , Q̄), F̄ and Q̄
are given by

F̄ = eFT , Q̄ =

∫ T

0

(eFτ )GGT (eFτ )T dτ (13)

and where the triplet (F,G,H) is calculated as per Section
II-D, R , σ2

nI , and Ck , IkK
1/2
s H with Ik ∈ {0, 1}Mk×M

being the indicator matrix selecting the locations contained
in M(k).

D. Kalman regression on X

Section III-C showed how to build an estimate f̂k of the
process over the observable finite-dimensional set XM. This
section summarizes the procedure for obtaining a minimum
variance estimate at any spatial location as detailed in [23].

Consider any spatial location x ∈ X. At time step tk,
the minimum variance process estimate and the posterior
variance at x are given by

f̂(x, tk) = Ψf̂k

V(f̂(x, tk)) = g(x,x)−Ψ(Ks − Σf )ΨT
(14)

where Ψ = g(x,XM)K−1
s . The above results state that

the outputs of the Kalman filter capture all the necessary
information to estimate the process over the entire domain
X.

IV. MEDIUM-FIDELITY AWE SYSTEM POWER
GENERATION MODEL

Turning to our AWE system case study, this section
presents a medium-fidelity model for characterizing the
power output of an airborne kite executing cross-current
motions, using on-board power generation.

A. External loads
The net external force vector acting on the the kite is

the sum of forces due to gravity, aerodynamic lift and drag,
turbine drag, and tether tension, given as follows:

~Fnet =~Fgrav + ~Flift + ~Fdrag + ~Fturb + ~Fthr

=−mgk̂Ō +ArqCL~uL +ArqCD~uD+

AtqCD,t~uD + Fthrk̂T̄

Here, m is the kite mass, g is the gravitational acceleration,
Ar is the kite reference area, At is the turbine area, Fthr
is the force exerted by the tether on the kite, and k̂T̄ is the
radial unit vector which connects the center of the sphere
to the kite. The variables CL and CD denote the lift and
drag coefficients of the kite whereas CD,t is the turbine drag
coefficient. The resulting fluid dynamic force depends on the
dynamic pressure, which in turn is dependent on the apparent
wind at the kite, and is given by:

q =
1

2
ρ‖~va‖2

=
1

2
ρ‖~vw − ~vk‖2,

(15)

where ~vw is the wind velocity and ~vk is the kite velocity.
Lastly, ~uD and ~uL are unit vectors pointing in the direction
of the drag and lift force of the kite, where ~uD acts in
the direction parallel to the apparent flow ~va, while ~uL acts
perpendicular to ~uD and in the longitudinal plane of the kite.

Fig. 3: Schematic of back view of kite showing the transverse
and vertical axes, roll angle, lift force and, the turning lift
force

B. Path radius of curvature
Given path parameters, a and b, and the path mean

elevation angle, θ, the path azimuth and elevation are given
by

φp(s) =
a sin (s)

1 +
(
a
b cos (s)

)2
θp(s) =

a2

b2 sin (s) cos (s)

1 +
(
a
b cos (s)

)2 + θ

(16)



where s is a path parameter that varies from 0 to 2π,
describing a particular location on the path. The position
of the path in the ground frame is calculated using standard
spherical to Cartesian conversion, as follows:

xp(s) = lthr cos (φp(s)) cos (θp(s))

yp(s) = lthr sin (φp(s)) cos (θp(s))

zp(s) = lthr sin (θp(s))

(17)

We then calculate the radius of curvature by

Rcurv =
(ẋ2
p + ẏ2

p + ż2
p)3/2

√
D

where (18)

D = (z̈pẏp − ÿpżp)2 + (ẍpżp − z̈pẋp)2 + (ÿpẋp − ẍpẏp)2

where ẋp, ẏp, żp, ẍp, ÿp, and z̈p denote first and second
derivatives with respect to the path parameter s.

C. Tangent roll angle dynamics
As illustrated in Fig. 3, the kite uses roll control to re-

vector its lift in order to stay on the target path (or return to
the target path, as necessary). To characterize the dynamics
associated with this motion, we consider a coordinate system
(̂iB̄ , ĵB̄ , k̂B̄) attached to the kite, where îB̄ is along the kite
longitudinal axis pointing forward, ĵB̄ lies along the kite
transverse axis pointing to the left wingtip, and k̂B̄ lies along
the kite vertical axis pointing upward.

We assume that a secondary controller keeps the kite’s
velocity vector aligned tangential to the path and in the tan-
gent plane, spanning (φp, θp), tangent to the sphere centered
at the ground station and with the radius equal to the tether
length. In fact, our prior work in [24] describes and validates
such a controller. In particular, by altering the tangent roll
angle, defined by ψ in Fig. 3 (which represents the angle
between the kite’s lateral axis and the sphere on which the
kite is flying), a component of the kite’s lift vector points
in a leftward or rightward direction relative to the sphere
on which the kite is flying. This allows the kite to navigate
itself back to the target path. The corresponding component
of lifting force in the plane tangent to the sphere on which
the kite is flying is given by

~Fturn = ~Flift sin (ψ). (19)

The required centripetal force for the kite to follow the
prescribed path can be calculated by

~Fcent =
m‖~vk‖2

Rcurv
(20)

and acts in a direction perpendicular to the path. Lastly,
we compute the required roll angle to follow the path and
achievable steady-state kite speed by numerically solving the
following system of equations at each location along the
path:

~Fnet · îT̄ = 0 (21)
~Fturn − ~Fcent = 0 (22)

Fthr + (~Fgrav + ~Flift + ~Fdrag) · k̂T̄ = 0 (23)

The net power generated over one figure-8 lap is given by

Plap =

∫ 2π

0

1

2
Cpρ(−va(s) · îB̄)3πAt ds (24)

where Cp is the power coefficient.

V. ADAPTIVE CONTROL STRATEGY

The goal of the presented adaptive control strategy is to
optimize the mean elevation angle of the AWE kite system
to maximize power generation of the kite in a partially
observable and spatiotemporally varying wind shear profile.
Therefore, the control strategy must achieve a balance be-
tween learning more about the environment over the control
space (exploration) and selecting a mean elevation angle that
is deemed optimal based on the collected data (exploitation),
while accounting for future evolution of the wind shear
profile. Model predictive control (MPC) with a Kalman filter-
based GP model is used for this purpose.

A. MPC setup
The goal of MPC is to use a model of the process to predict

the future evolution of the system and compute control
actions by optimizing a cost function that depends on these
predictions [25]. In performing this optimization, MPC can
explicitly consider hard constraints on both the control signal
and the system states.

The overall goal of the adaptive controller can be summa-
rized by the following optimization problem:

θ∗sp(k) = arg max
θ

J(θsp(k)) (25)

Subject to: |θ(i|k)− θ(i− 1|k)| ≤ θlim
θ(i|k) ∈ [θmin, θmax] ∀ i

where

J(θsp(k)) =

k+P−1∑
i=k

(
Jexploit(θsp(k)) + 2βJexplore(θsp(k))

)
Here, P is the MPC prediction horizon, β is the weigh-
ing constant that balances exploration versus exploitation,
[θmin, θmax] is the set that spans the allowable mean eleva-
tion angles, and θlim is a rate limitation constant used to limit
the change in the mean elevation over one time step. The
vector θsp corresponds to the mean elevation angle trajectory
vector over the prediction horizon, given as

θsp(k) = [θsp(k|k) . . . θsp(k|k + P − 1)]T (26)

As is typical with MPC, the first term in the optimized
control input trajectory represents the commanded control
input at step k. In this case, the commanded control input is
the mean elevation angle setpoint, given as

θsp = θ∗sp(k|k) (27)

The exploration and exploitation terms in the reward function
are given by

Jexplore(θsp(k)) =
(
V(f̂(zsp(k), tk))

)3/2
(28)

Jexploit(θsp(k)) =
(
f̂(zsp(k), tk) cos(θsp(k))

)3
(29)



where Jexploit(θsp(k)) is a surrogate for expected power
generation subject to cosine losses [26], f̂(θsp(k), tk) and
V(f̂(zsp(k), tk)) are prediction mean and variance of the
flow speed at time step tk calculated as per Eqn. (14) at
altitude, zsp(k) = lthr sin(θsp(k)), where lthr is the tether
length.

VI. RESULTS

A. Synthetic wind profile and statistical characterization for
GP model

To characterize the proposed adaptive control technique in
a realistic wind environment, one year of wind data obtained
from a 900 MHz Doppler wind profiler deployed in Lewes,
Delaware [27] was used to identify hyperparameters of a GP
model. Using a process described in [28], hyperparameters
identified from this (relatively limited) data set were used to
generate a large synthetic data set, which was in turn used
for the validation of the proposed control approach.

For the GP model, where the spatial variable is altitude
(z), the mean function was chosen to be a standard power
law model, whereas the covariance kernel was selected as a
squared exponential kernel:

m(z) = v0

(
z

z0

)b
= azb, (30)

g(z, z′) = σ2 exp

(
− (z − z′)2

2l2z

)
, (31)

h(t, t′) = exp

(
− (t− t′)2

2l2t

)
(32)

where σ, lz , and lt are the hyperparameters of the kernel.
Specifically, σ2 is the signal variance, which characterizes
the expected deviation (squared) of a performance measure-
ment from the mean, lz and lt are the length scales of the
system that characterize how quickly the wind speed changes
with respect to altitude, z, and time, t, respectively. The
variable b is the power law exponent and v0 is a reference
wind speed at z0, a reference altitude. The two parameters
v0 and zb0 can be combined into a single coefficient denoted
by a. The values of the hyperparameters were chosen to
maximize the log marginal likelihood over 100 evaluations
of the model with respect to the training data, which were
calculated as follows:

− log(p(y|x)) =
1

2
yTK(x, x)−1y

+
1

2
log|K(x, x)|+ N

2
log 2π

(33)

where N is the number of training points, K(x, x) is the
covariance matrix evaluated at all training points, |·| refers to
the determinant, and y is the data collected at each training
point. Using this methodology, the hyperparameters of the
training data were identified as:

lt = 22 min, lz = 270 m, σ = 5.1 m/s,

a = 3.77, b = 0.14

Figure 4 shows the synthetically generated wind shear profile
at various time instances.

Fig. 4: Evolution of synthetically generated wind shear
profile with time.

B. Kalman filter setup
To obtain the minimum variance prediction of wind speed

using the recursive Kalman filtered GP, we first apply the
Wiener-Khinchin theorem given in Eqn. (7) to the wind
temporal kernel shown in Eqn. (32) to calculate its PSD,
given by

S(ω) =

√
π

κ
exp

(
− ω2

4κ

)
(34)

where κ = 1/2l2t . Since the above PSD is not of rational
order 2r, we can think of S(ω) as a function of ω2, and
form a Taylor series approximation of 1/S(w) as follows:

1

S(ω)
=

√
κ

π
exp

(
ω2

4κ

)
≈
√
κ

π

(
1 +

ω2

4κ
+

1

2!

ω4

(4κ)2
+ . . .+

1

N !

ω2N

(4κ)N

)
=

1

N !(4κ)N

√
κ

π

(
N !(4κ)N +N !(4κ)N−1ω2

+
N !(4κ)N−2

2!
ω4 + . . .+ ω2N

)
(35)

To simplify the results, we assume that N is even. The exact
spectral density in Eqn. (34) can be approximated by the
following spectral density:

Sr(ω) = N !(4κ)N
√
π

κ

(
1∑N

n=0
N !(4κ)N−n

n! ω2n

)
(36)

which has rational order 2r and can therefore be rewritten
as Sr = W (iω)W (−iω) and therefore can be expressed has
continuous time state-space representation similar to Eqn.
(9).

Lastly, the minimum variance prediction can be calculated
using the steps detailed in Sections III-C and III-D. Figure
5 shows the comparison between computational time and
percentage fit of the predictions obtained from the regression



using Kalman filtered GP (N = 2) to a batch GP calculated
as

Fit [%] =

(
1−
‖f̄bgp − f̂kfgp‖
‖f̄bgp‖

)
100 (37)

where f̄bgp and f̂kfgp denote the predictions obtained from
batch GP and Kalman filtered GP, respectively. It can be
seen that the percentage fit between the predictions obtained
from the Kalman filtered GP and batch GP is over 95% over
the entire duration of the simulation. On the other hand, the
Kalman filtered GP maintains a constant computation time,
in contrast with the increasing computation time for the batch
GP.

Fig. 5: Prediction and computational time comparison be-
tween batch GP and Kalman filtered GP.

C. Mean elevation angle control
To demonstrate the merits of the proposed adaptive con-

troller, the system performance was compared across three
different control strategies:

1) Offline optimized (Omniscient): In this strategy, we
determine the optimum mean elevation that maximizes the
surrogate for power generation given by Eqn. (29) by
assuming a priori knowledge of the environment and no
constraints on the change in elevation angle between time
steps. Although this strategy is not implementable in real-
time, it represents an upper bound on the potential of any
control strategy.

2) Constant mean elevation (Baseline): In this strategy,
the kite is operated at a constant mean elevation angle, which
is calculated by taking the average of the mean elevation
angles obtained from offline optimized strategy. This strategy
is implementable in real time and represents a baseline
control strategy.

3) MPC: This strategy uses the MPC control scheme of
Eqn. (25) with an exploration versus exploitation weighing
constant given by β = 6, rate limitation constant given by
θlim = 5 deg, and prediction horizon equal to 6 time steps.

Figure 6 shows the results obtained when using the afore-
mentioned control strategies. The kite design is similar to the
one used in [7] with the addition of a turbine with diameter
equal to 0.44 m and power coefficient, Cp = 0.5. The ratio
of average values of Jexploit for MPC and baseline strategy
at the end of simulation is equal to 2.19, showing a 119%
improvement in performance.

Fig. 6: Control strategy performance comparison.

D. Parameter sweep
To study the effect of mobility limitations and explo-

ration vs. exploitation weighting on the MPC controller
performance, we calculated the percentage improvement in
performance over a range of θlim and β, for 500 synthetically
generated wind profiles. Figure 7 demonstrates that for all
the values of θlim and β, the MPC controller performs at
least as well as the baseline strategy, and comparably with
respect to the omniscient strategy. Also, not surprisingly,



when mobility restrictions are loosened through larger values
of θlim, the MPC strategy is capable of achieving closer
performance to the omniscient result with an appropriate
exploration/exploitation balance.

Fig. 7: Parameter sweep results for ratio of Jexploit calculated
for the MPC strategy to baseline strategy (top), and ratio of
Jexploit calculated for the MPC strategy and the omniscient
controller (bottom) as a function of θlim and β

VII. CONCLUSION

In this paper, we presented a adaptive control strategy
which fuses model predictive control (MPC) and Kalman
filter-based Gaussian Process (GP) modeling to perform
computationally tractable control in a partially observable,
spatiotemporally varying environment. The proposed strategy
was validated on an airborne wind energy (AWE) system,
whereby a high-lift wing with on-board rotors executes
power-augmenting crosswind flight. Results showed that
the proposed strategy consistently outperforms a baseline
strategy where the AWE system operates at a fixed elevation
angle.
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