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Chapter 1 

Introduction 
 
Virtual Flow Solver - Geophysics (VFS-Geophysics) is a three-dimensional (3D) incompressible Navier-
Stokes solver based on the Curvilinear Immersed Boundary (CURVIB) method developed by Ge and 
Sotiropoulos [1]. The CURVIB is a sharp interface type of immersed boundary (IB) method that enables 
the simulation of fluid flows in the presence of geometrically complex moving bodies. In IB approaches, 
the structural body mesh is superposed on the underlying Eulerian fluid mesh that is kept fixed. This 
approach circumvents the limitation of classical body fitted methods in which the fluid mesh adapts to 
the body, and thus is limited to relatively simple geometries and small amplitude motions. 
 A particularity of the CURVIB method with respect to most sharp interface IB methods is that it 
is formulated in generalized curvilinear coordinates. This feature allows application of a body-fitted 
approach for the simpler boundaries while maintaining the ability to incorporate complex and moving 
geometries. For instance, in marine and hydrokinetic (MHK) energy applications, one could take 
advantage of this feature when simulating the site-specific geometry of a MHK farm. The fluid mesh 
can follow the actual topography of the terrain while treating the turbines as immersed bodies. 
 The CURVIB method has been applied to a broad range of applications, such as cardiovascular 
flows [2, 3, 4], riverbed morphodynamics [5, 6, 7], and wind/ MHK turbine simulations [8, 9]. For wind/ 
MHK energy applications, a turbine can be resolved by immersing the geometry with the IB method or 
by using one of the different rotor parameterization models implemented. 
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Chapter 2  

Overview of the Numerical Algorithms 
 

2.1 The Flow Solver 

The code solves the spatially filtered Navier-Stokes equations governing incompressible flows. 

𝐽
𝜕𝑈!

𝜕𝜉!
= 0 (2.1) 

𝜕𝑈"

𝜕𝑡 = 𝜉#! -−
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𝜕𝜉"

+
1
𝑅𝑒

𝜕
𝜕𝜉" 3

𝜉#
"𝜉#$

𝐽
𝜕𝑢#
𝜕𝜉$4 −

𝜕
𝜕𝜉" 3

𝜉#
"𝑝
𝐽 4 −

𝜕𝜏#"
𝜕𝜉" +

𝛿!%
𝐹𝑟%:

(2.2) 

where 𝜉!  are the curvilinear components, 𝜉#!  are the transformation metrics, 𝐽	 is the Jacobian of the 
transformation, 𝑈! are the contravariant volume fluxes, 𝑢! are the Cartesian velocity components, 𝜌 is 
the density, 𝜇  is the dynamic viscosity, 𝑝 is the pressure, 𝜏#" is the sub-grid scale (SGS) tensor, 𝛿!" is 
the Kronecker delta, and 𝑅𝑒, and 𝐹𝑟 are respectively the dimensionless Reynolds and Froude numbers. 
These numbers are defined as: 

𝑅𝑒 =
𝑈𝐿𝜌
𝜇 , 𝐹𝑟 =

𝑈
@𝑔𝐿

(2.3) 

where 𝑈  is the characteristic velocity, 𝐿  is the linear dimension, 𝜌  is the density, µ is the dynamic 
viscosity, and 𝑔 is the gravitational acceleration. 

2.2 The CURVIB Method 

The code can simulate flows around geometrically complex moving bodies with the sharp interface 
CURVIB method developed by Ge and Sotiropoulos [1]. The method has been thoroughly validated in 
many applications, such as fluid-structure interaction (FSI) problems [10, 11], riverbed morphodynamics 
[5, 6, 7], and cardiovascular flows [2, 3, 4]. 
 In the CURVIB method, the bodies are represented by an unstructured triangular mesh that is 
superposed on the background curvilinear or Cartesian fluid grid. First, the computational domain’s 
nodes are classified depending on their location with respect to the position of the body. The nodes that 
fall inside the body are considered structural nodes and are blanked out from the computational domain. 
The nodes that are located in the fluid but in the immediate vicinity of the structure are denoted as IB 
nodes, where the boundary condition of the velocity field is reconstructed. The remaining nodes are the 
fluid nodes where the governing equations are solved. 
 The velocity reconstruction is performed in the wall normal direction with either linear or 
quadratic interpolation in the case of low Reynolds number flows when the IB nodes are located in the 
viscous sub-layer. otherwise, the velocity reconstruction uses the wall models described by [12, 13, 14] 
in high Reynolds number flows when the grid resolution is not sufficient to accurately resolve the viscous 
sub-layer. 
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 The distance function φ also needs to be reconstructed at the body-fluid interface. This is done 
by setting gradient ∆φ to be zero at the cell faces that are located between the fluid and IB nodes as 
described in [15]. 

2.3 The Structural Solver and the Fluid-Structure Interaction Algorithm 

The original FSI algorithm implementation for incompressible flows is described in Borazjani, Ge, and 
Sotiropoulos [10]. 

The code solves the rigid body equations of motion (EoM) in 6 degrees of freedom (DoF), which 
can be written in Lagrangian form for the principal axis as follows (i=1, 2, ..., 6): 

𝑀
𝜕𝑌%

𝜕𝑡%
+ 𝐶

𝜕𝑌!

𝜕𝑡
+ 𝐾𝑌! = 𝐹&! + 𝐹'! (2.4) 

where 𝑌! 	represents the coordinates of the Lagrangian vector describing the structure’s motion. For the 
translational DoFs, 𝑌! are the Cartesian components of the body position, 𝑀 is the mass matrix, 𝐶 is the 
damping coefficients matrix, 𝐾 is the spring stiffness coefficient matrix, 𝐹&! are the forces exerted by the 
fluid, and 𝐹'! are the components of the external force vector. For the rotational DoFs, 𝑌! are relative 
angle components of the body, 𝑀 represents the moment of inertia, and 𝐹&!  and 𝐹'!  are the moments 
around the rotation axis, respectively induced by the fluid and by the external forces. 
 The forces and moments that the fluid exerts on the rigid body are computed by integrating the 
pressure and the viscous stresses along the surface 𝛤 of the body as follows: 

𝐹& = J−𝑝𝑛
(

𝑑𝛤 + J𝜏!"
(

𝑛"𝑑𝛤 (2.5) 

𝑀& = J−𝜖!"$
(

𝑟"𝑝𝑛$𝑑Γ + J𝜖!"$
(

𝑟"𝜏$#𝑛#𝑑𝛤 (2.6) 

where 𝑝 denotes the pressure, τ the viscous stress, 𝜖!"$ the permutation symbol, 𝑟 the position vector, 
and 𝑛 the normal vector. 
 The EoM (equation (2.4)) are coupled with the fluid domain equations through a partitioned FSI 
approach. The time integration can be done explicitly with loose coupling (LC-FSI), or implicitly with 
strong coupling (SC-FSI). The Aitken acceleration technique of [16] allows for significant reduction in 
the number of sub-iterations when the SC-FSI algorithm is used. A detailed description of both time-
integration algorithms is given in [10]. 

2.4 Turbine Parameterizations 

The actuator disk, actuator line, and actuator surface models implemented in the code for parameterizing 
turbine rotors are given in Yang, Kang, and Sotiropoulos [8] and in Yang et al. [17]. The basic idea of 
these models is to extract from the flow field the kinetic energy that is estimated to be equivalent to that 
from a turbine rotor, without the need to resolve the flow around its geometry. To introduce such kinetic 
energy reduction into the flow, a sink term, affecting the fluid nodes located at the vicinity of the turbine, 
is considered in the right-hand side of the momentum equations. 
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2.4.1 Turbine Resolving  

In applications such as simulations of marine hydrokinetic turbines, it is computationally impractical to 
impose a no-slip boundary for flows with high Reynolds numbers. Thus, the CURVIB wall model was 
adopted by Kang et al. [31] to resolve the simplified turbulent boundary layer (TBL) equations. The 
solution of the TBL equations is based on the equilibrium stress balance model expounded by Wang and 
Moin [32]. The user can read a more detailed description of the wall model in Kang et al. [33].  
 The turbine resolution utilizes a hybrid staggered/non-staggered grid fractional step method as 
proposed by Ge and Sotiropoulos [34] and Kang et al. [31]. In the first step, the Navier-Stokes 
momentum equations are discretized in time by the second-order Crank-Nicolson method and are solved 
by the matrix-free Newton-Krylov method [33]. In the next step, the Poisson equation for pressure 
correction is solved, which is the following: 

−𝐽
𝜕
𝜕𝜉! Q

1
𝜌
𝜉#!

𝐽
𝜕
𝜕𝜉" 3

𝜉#
"𝛱
𝐽 4S =

1
∆𝑡 𝐽

𝜕𝑈",∗

𝜕𝜉"
(2.7) 

where 𝛱 = 𝑝+,- − 𝑝+ and the superscript * denotes the variables computed in the first step. In the last 
step, the solution of equation (2.7) is taken to update the velocity and pressure fields, and so the updated 
velocity becomes divergence free. The user can read more details about this method in Kang et al. [33].  
 When an immersed boundary (e.g., blade) moves, a local non-zero velocity flux arises at the 
interface between the immersed boundary and the internal nodes. This non-zero velocity flux is 
incorporated into the Poisson equation’s right-hand side as a boundary condition to account the moving 
boundaries’ inertial effects on the flow field. 

2.4.2 Actuator Disk Model 

In the actuator disk model, the turbine rotor is represented by a circular disk that is discretized with an 
unstructured triangular mesh. The body force of the disk per unit area is the following: 

𝐹./ = −
𝐹0

π𝐷%/4
(2.8) 

where D is the rotor diameter and 𝐹0 is the thrust force computed as: 

𝐹0 =
1
2ρ𝐶0

π
4 𝐷

%𝑈1% (2.9) 

where 𝑈1 is the turbine incoming velocity, 𝐶0 = 4𝑎(1 − 𝑎) is the thrust coefficient taken from the one-
dimensional momentum theory, and a is the induction factor. The incoming velocity 𝑈1  is also 
computed from the one-dimensional momentum theory as 

𝑈1 =
𝑢2
1 − 𝑎

(2.10) 

where 𝑢2 is the disk-averaged streamwise velocity computed as: 

𝑢2 =
4
π𝐷%]𝑢(𝑋)𝐴(𝑋)

3!

(2.11) 
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where 𝑁4  is the number of triangular elements composing the disk mesh, 𝐴(𝑋) is the area of each 
element, and 𝑢(𝑋) is the velocity at the element centers. The fluid velocity at the disk (𝑢(𝑋)) requires 
interpolation from the velocity values at the surrounding fluid mesh points as the nodes from the fluid 
and disk meshes do not necessarily coincide. If we consider X to be the coordinates of the actuator disk 
nodes and x the coordinates of the fluid mesh nodes, the interpolation, which uses a discrete delta 
function, reads as follows: 

𝑢(𝑋) =]𝑢(𝑥)δ5(𝑥 − 𝑋)𝑉(𝑥)
3"

(2.12) 

where h is a 3D discrete delta function, V (x) is the volume of the corresponding fluid cell, and ND is the 
number of fluid cells involved in the interpolation. Finally, the body force 𝑓./, which is computed at the 
disk mesh nodes, needs to be distributed over the fluid cells located in the immediate vicinity using the 
following expression: 

𝑓./(𝑥) =]𝐹./(𝑋)δ5(𝑥 − 𝑋)𝐴(𝑥)
3"

(2.13) 

2.4.3 Actuator Line Model 

In the actuator line method, each blade of the rotor is modeled with a straight line, divided in several 
elements along the radial direction. In each of the elements, the lift 𝐶6 and drag 𝐶/ forces are computed 
using the following expressions: 

𝐿 =
1
2𝜌𝐶6𝐶𝑉7'#

% , (2.14) 

𝐷 =
1
2𝜌𝐶/𝐶𝑉7'#

% , (2.15) 

where 𝐶6 and 𝐶/ are respectively the lift and drag coefficients taken from tabulated two-dimensional 
(2D) airfoil profile data, C is the chord length, and 𝑉7'# is the incoming reference velocity computed as: 

𝑉7'# = (𝑢8 , 𝑢9 − Ω𝑟) (2.16) 
where 𝑢8 and 𝑢9 − Ω𝑟 are the velocity components respectively in the axial and azimuthal directions, Ω 
the rotor’s angular velocity, and r is the distance to the center of the rotor.  
 To compute the reference velocity at the line elements, similarly to the actuator disk method, the 
velocity at the fluid mesh is transferred to the line elements using a discrete delta function as given by 
equation (2.12). Once the lift and drag forces are computed at each of the line elements, the distributed 
body force in the fluid mesh can be computed using the following equation: 

𝑓.6(𝑥) =]𝐹(𝑋)𝛿5(𝑥 − 𝑋)𝐴(𝑥)
3#

(2.17) 

where 𝑁6 is the number of segments composing one of the actuator lines, 𝐹(𝑋) is the projection of L and 
D, expressed in actuator line local coordinates, into Cartesian coordinates. 
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2.4.4 Actuator Surface model 

In both actuator surface models, we have two sets of independent meshes: i.e., the background Cartesian 
grid for the flow with its coordinate denoted by x (x,  y,  z or 𝑥-, 𝑥%,  𝑥: ), and the Lagrangian grid 
following the actuator surfaces with its coordinate denoted by X (X,  Y ,  Z or 𝑋-,  𝑋%,  𝑋: ). For both 
models, the smoothed discrete delta function in [18] is employed as the kernel function for transferring 
information between the two meshes. The major difference between the blade actuator surface model 
and the nacelle actuator surface model is the way in which the forces on the actuator surfaces are 
calculated. 

 
Figure 2.1: A schematic of the actuator surface model for blade. The lift and drag forces calculated using 
the blade element method are distributed over the actuator surface formed by chord lines of a blade. 

2.4.4.1 Actuator surface model for blade 

In the blade actuator surface model, the blade geometry is represented by a surface formed by the chord 
lines at different radial locations of a blade as shown in Figure 2.1(a). The forces are calculated in the 
same way as in the actuator line model. The lift (𝐿) and drag (𝐷) at each radial location are calculated 
by: 

𝐿 =
1
2 ρ𝐶6c

|𝐕𝒓𝒆𝒍|%𝐞6 (2.18) 

𝐷 =
1
2ρ𝐶/c

|𝐕𝒓𝒆𝒍|%𝐞/ (2.19) 

where 𝐶6 and 𝐶/ are the lift and drag coefficients, c is the chord length, 𝐕𝒓𝒆𝒍 is the relative incoming 
velocity, and 𝐞6 and 𝐞/ are the unit vectors in the directions of lift and drag, respectively. The 𝐶6 and 
𝐶/ are functions of the Reynolds number and the angle of attack. The angle of attack α shown in Figure 
2.1(b) is computed at each radial location by: 

α = ϕ − γ (2.30) 
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where 𝜙 = − tan>-x𝑢?/(𝑢9 − Ω𝑟)y, and 𝛾 is the angle including the blade twist and the blade pitch, the 
latter of which is specified to a given value instead of from a turbine control algorithm. The relative 
incoming velocity 𝐕𝐫𝐞𝐥 at each radial location is computed by: 

VCDE  =  uF𝐞𝐱 + (uH − Ω r)𝐞9 (2.31) 

where Ω is the rotor’s rotational speed, and 𝐞? and 𝐞9 are respectively the unit vectors in the axial and 
azimuthal directions. The 𝑢?  and 𝑢H  are the axial and azimuthal components of the flow velocity 
averaged over the chord for each radial location, which are computed using: 

uF =
1
c Ju

(X) ⋅ eFds
I

(2.32) 

uH =
1
c Ju

(X) ⋅ eHds
I

(2.33) 

where 𝑋 denote the coordinates of the grid points on the actuator surfaces. 
 Generally, the grid points on the actuator surfaces do not coincide with any background nodes. 
We employ a smoothed discrete delta function (i.e., the smoothed four-point cosine function) proposed 
by Yang et al. [18] to interpolate 𝑢(𝑋) from the values on the background grid nodes as follows: 

u(X) = ] u(x)δJ(x − X)V(x)
F∈L$

(2.34) 

where 𝒙 are the coordinates of the background grid nodes, 𝑔𝒙 is the set of the background grid cells, 𝑉 =
ℎ?ℎNℎ8 (ℎ?, ℎN and ℎ8 are respectively the grid spacings in the 𝑥, 𝑦 and 𝑧 directions) is the volume of 

the background grid cell, 𝛿5(𝒙 − 𝑿) =
-
O
𝜙 �?>P

5%
�𝜙 �N>Q

5&
�𝜙 �8>R

5'
� is the discrete delta function, and 𝜙 

is the smoothed four-point cosine function [18], which is expressed as: 

⎩
⎪
⎨

⎪
⎧
1
4
+
𝑠𝑖𝑛(𝜋(2|𝑟| + 1)/4)

2𝜋
−
𝑠𝑖𝑛(𝜋(2|𝑟| − 1)/4)

2𝜋
, |𝑟| ≤ 1.5,

5
8
−
|𝑟|
4
−
𝑠𝑖𝑛(𝜋(2|𝑟| − 1)/4)

2𝜋
, 1.5 ≤ |𝑟| ≤ 2.5,

0, 2.5 ≤ |𝑟|

(2.35) 

in which 𝑟! = (𝑥! − 𝑋!)/ℎ! (𝑖=1, 2, 3). 

 The blade rotation causes the stall delay phenomenon at the blade’s inboard sections, which 
increases the lift coefficients and decreases the drag coefficients as compared with the corresponding 
two-dimensional airfoil data. To account for such a three-dimensional rotational effect, the stall delay 
model developed by Du and Selig [19] is employed to correct the lift and drag coefficients from two-
dimensional experiments or numerical simulations. In Du and Selig's model, the corrected lift and drag 
coefficients (𝐶6,:/ and 𝐶/,:/) are calculated as follows: 

CS,:T = CS,%T + fSxCS,U − CS,%Ty (2.36) 

𝐶/,:/ = 𝐶/,%/ − 𝑓/x𝐶/,%/ − 𝐶/,Vy (2.37) 
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where 𝐶6,W = 2𝜋(𝛼 − 𝛼V), 𝐶/,V is the two-dimensional drag coefficient at zero angle of attack, and the 
correction functions 𝑓6 and 𝑓/ are respectively determined by: 

𝑓6 =
1
2πQ

1.6(𝑐/𝑟)𝑎 − (𝑐/𝑟)
2
X
Y
7

0.1267𝑏 + (𝑐/𝑟)
2
X
Y
7
− 1S (2.38) 

𝑓/ =
1
2πQ

1.6(𝑐/𝑟)𝑎 − (𝑐/𝑟)
2
%X
Y
7

0.1267𝑏 + (𝑐/𝑟)
2
%X
Y
7
− 1S (2.39) 

where Λ = Ω𝑅/@𝑈% + (Ω𝑅)%, 𝑈 is the incoming wind/ water speed, 𝑅 is the rotor radius, and 𝑎, 𝑏, and 
𝑑 are the empirical correction factors. In this work, a, b and d are equal to 1 as in Du and Selig's paper 
[19]. 

 Non-zero force can exist at the blade tip when the pitch angle is nonzero, or when a chambered 
foil is used [20]. This is in contradiction with the physical understanding that the force should tend to 
zero at the tip due to pressure equalization as discussed by Shen et al. [20]. To correct this non-physical 
force behavior, the tip-loss correction proposed by Shen et al. [20, 21] is applied to the drag and lift 
coefficients computed from equation (2.36) and (2.37). With the tip loss correction, the employed 𝐶/ 
and 𝐶6 are calculated as: 

𝐶6 = 𝐹-𝐶6,:/ (2.40) 

𝐶/ = 𝐹-𝐶/,:/ (2.41) 

where: 

𝐹- =
2
π cos

>- 3exp 3−𝑔
𝐵(𝑅 − 𝑟)
2𝑟 sinϕ 44

(2.42) 

in which 𝐵 is the number of blades, and 𝑔 is computed by: 

𝑔 = expx−𝑐-(𝐵Ω𝑅/𝑈1 − 𝑐%)y + 𝑐: (2.43) 

where 𝑐-, 𝑐%, and 𝑐: are the correction coefficients, which are respectively equal to 0.125, 21, and 0.1 as 
in [21]. 

 After calculating the lift (𝐋) and drag (𝐃), the force per unit area on the actuator surface at each 
radial location is then calculated as: 

𝑓(𝑋) = (𝐿 + 𝐷)/𝑐 (2.44) 

Note that the above expression essentially means that the lift and drag on the blade are uniformly 
distributed in the chordwise direction. To calculate the forces on the background mesh for the flow field, 
the computed forces on the actuator surfaces are then distributed to the background grid nodes as follows: 
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𝑓(𝑥) = − ] 𝑓(𝑋)δ5(𝑥 − 𝑋)𝐴(𝑋)
P∈Z(

(2.45) 

where 𝑔𝐗 is the set of the actuator surface grid cells and 𝐴 is the area of the actuator surface grid cell. 
The same discrete delta function as in equation (2.34) is employed. It is noted the negative sign is because 
𝐟(𝐱) represents the forces of the actuator surfaces acting on the flow while 𝐟(𝐗) denotes the forces of the 
flow acting on the actuator surfaces. 

2.4.4.2 Actuator surface model for Nacelle 

Resolving the boundary layer over a nacelle of a utility scale wind/MHK turbine, which becomes almost 
impossible for wind/MHK farm scale simulations, requires a much finer mesh as compared with the 
mesh for resolving the thickness of an atmospheric boundary layer. To take into account the nacelle 
effects on a relatively coarse mesh, in this section we present an actuator surface model for 
parameterizing the nacelle effect without directly simulating the boundary layer flows over the nacelle. 

 
Figure 2.2: A schematic of the actuator surface model for nacelle. As shown in (a), the normal force 𝑓+ 
at the Lagrangian point A is computed by equation (2.46) with the estimated velocity 𝑢¢(𝑋) at point A 
interpolated from the surrounding Cartesian grid nodes using equation (2.34). The magnitude of the 
tangential force 𝑓\  is computed by equation (2.48) using the incoming streamwise velocity 𝑈 and a 
friction coefficient given by equation (2.49). The tangential force’s direction is assumed to be the same 
as that of the tangential velocity at point B, which is interpolated from the surrounding Cartesian grid 
nodes using equation (2.34). The computed forces are distributed to the surrounding Cartesian grid nodes 
(the gray area shown in (a)) using equation (2.45). 

 In this model, the nacelle geometry is represented by the actual surface of the nacelle with 
distributed forces. As shown in Figure 2.2, the force acting on the actuator surface is decomposed into 
the normal component and the tangential component. From a physical point of view, the actuator surface 
of the nacelle may not act as a sink or a source of mass however the boundary layer over the nacelle is 
modeled. Based on this consideration, the normal component of the force on the actuator surface is 
computed by satisfying the non-penetration constraint. The non-penetration constraint can be met by 
directly reconstructing the wall-normal velocity near the actuator surface as in the sharp interface 
immersed boundary method. However, a physically reasonable interpolation scheme is difficult to 
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implement because of the very coarse grid employed in the actuator type simulations. Moreover, direct 
velocity reconstruction cannot ensure a smooth representation of the nacelle geometry because of the 
very coarse grid. In this work we represent the nacelle geometry as a diffused interface the same as in 
the direct forcing immersed boundary method. In this actuator surface model for nacelle, the normal 
component of the force acting on the surface per unit area is calculated in the same way as in the direct 
forcing immersed boundary method, which is expressed as follows: 

𝒇𝒏(𝑿) =
ℎ�−𝒖2(𝑿) + 𝒖¥(𝑿)� ⋅ 𝑒+(𝑿)

Δ𝑡
𝑒+(𝑿) (2.46) 

where 𝐮𝐝(𝐗)  is the desired velocity on the nacelle surface, 𝐞𝐧(𝐗) is the unit vector in the normal 

direction of the nacelle surface, ℎ = xℎ?ℎNℎ8y
-/: is the length scale of the local background grid spacing 

(different values of ℎ  have been tested without noticing any significant differences), 𝐮¥(𝐗)  is the 
estimated velocity on the actuator surface, which is interpolated from the corresponding estimated 
velocity on the background mesh using equation (2.34) with the 𝐮¥(𝐱) on the background mesh computed 
as: 

𝒖¥(𝒙) = 𝒖+(x) + 𝒓𝒉𝒔n(x)𝚫𝑡 (2.47) 

where Δ𝑡 is the size of the time step, the right-hand-side term 𝐫𝐡𝐬a includes the convection, pressure 
gradient and diffusion terms computed from the quantities of previous time step 𝑛.  

 The tangential force acting on the surface depends on the incoming velocity, the surface geometry, 
and the complex near-wall turbulence. Neither of the last two can be directly captured in the actuator 
type simulations by using the no-slip boundary conditions or the shear stress boundary conditions for 
wall models [22, 23]. In the present actuator surface model, we assume that the tangential force is 
proportional to the local incoming velocity, and that the effects of surface geometry and near-wall 
turbulence can be parameterized using a single parameter, the friction coefficient 𝑐& . Based on this 
assumption, the tangential force acting on the surface per unit area is computed as: 

𝒇𝛕(𝑿) =
1
2 𝑐&𝑈

%𝒆𝝉(𝑿) (2.48) 

where 𝑐& is calculated from the empirical relation proposed by F. Schultz-Grunow [24] for turbulent 
boundary layers with zero pressure gradient, which is expressed as follows: 

𝑐& = 0.37(lo g 𝑅 𝑒?)>%.efg (2.49) 

where 𝑅𝑒? is the Reynolds number based on the incoming velocity and the distance from the upstream 
edge of the immersed body. It is noticed that this expression is invalid for the region with a large pressure 
gradient. Yet, for the present nacelle simulation, a zero-pressure gradient can be regarded as a reasonable 
assumption for most of the turbine nacelle. The framework presented in this work is applicable to more 
complex geometries if the corresponding distribution of 𝑐& is available from experiments or high-fidelity 
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simulations. In equation (2.48), 𝑈 is the reference velocity of the incoming flow. In the present work, it 
is selected as the magnitude of the incoming streamwise velocity.  The direction of the tangential force 
𝐞\(𝐗), on the other hand, is determined by the local tangential velocity relative to the velocity at the 
nacelle surface at points located at ℎ away from the wall, i.e., point B in Figure 2.2, as follows: 

𝑒h(𝑋) =
𝑢x𝑋 + ℎ𝑒+(𝑋)y
²𝑢x𝑋 + ℎ𝑒+(𝑋)y²

(2.50) 

 After computing the forces on the actuator surface of the nacelle, the forces on the background 
mesh are distributed from the actuator surface mesh in the same way as in equation (2.45). It is noted 
that the forces are distributed over the closest five cells defined by the width of the employed smoothed 
cosine discrete delta function. This force distribution width will be very small if we have a sufficiently 
high grid resolution to resolve the boundary layer. For the grids used in the actuator type simulations, 
however, this force distribution width is so large that it may cause non-physical velocity field near the 
nacelle, affecting the calculation of the blade’s relative incoming velocity. To remedy this problem, we 
simply let the relative incoming velocity (𝐕𝐫𝐞𝐥 in equation (2.31)) of the two closest radial locations to 
the nacelle surface be equal to that of the third closest location away from the nacelle. 

2.5 Large-Eddy Simulation 

The description of the Large-eddy simulation (LES) model implemented in the code is extensively 
described in Kang et al. [25]. The sub-grid stress term in the right-hand side of the momentum equation 
resulting from the the filtering operation is modeled with the Smagorinsky SGS model of [26] which 
reads as follows: 

τ!" −
1
3 τ$$δ!" = −2µ4𝑆!" (2.51) 

where µ4 is the eddy viscosity, the overline indicates the grid filtering operation, and 𝑆!" is the large-
scale strain-rate tensor. The eddy viscosity can be written as 

µ4 = 𝐶iΔ%²𝑆² (2.52) 

where Δ is the filter width taken from the box filter, ²𝑆² = �2𝑆!"j)*�
-/%

 is the magnitude of strain-rate 

tensor, and 𝐶i  is the Smagorinsky constant computed dynamically with the Smagorinsky model of 
Germano et al. [27]. 
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2.6 Wave generation 

2.6.1 Linear wave theory 

 
Figure 2.3: Schematic of a water wave in linear wave theory [40]	

The equation governing the displacement of the water surface η(x, t) from the mean water level is: 

𝜂(𝑥, 𝑡) =
𝐻
2 𝑐𝑜𝑠𝑘(𝑥 − 𝐶𝑡) =

𝐻
2 𝑐𝑜𝑠𝑘(𝑘𝑥 − 𝜎𝑡)

(2.53) 

Because the wave motion is assumed to be periodic (repeating identically every wavelength) in 
the wave direction (+x), the factor k, the wave number, is used to ensure that the cosine (a periodic 
mathematical function) repeats itself over a distance L, the wavelength. This forces the definition of k to 
be k = 2π/L. 

For periodicity in time, which requires that the wave repeat itself every T seconds, we have σ = 
2π/T, where T denotes the wave period. We refer to σ as the angular frequency of the waves. Finally, C 
is the speed at which the wave form travels, C = L/T = σ/k. The wavelength and period of the wave are 
related to the water depth by the dispersion relationship: 

𝜎% = 𝑔𝑘𝑡𝑎𝑛ℎ𝑘ℎ (2.54) 
Under the progressive wave, Eq. (2.53), the water particles move in elliptical orbits, which can 

be decomposed into the horizontal and vertical velocity components u and w as follows: 

𝑢(𝑥, 𝑧, 𝑡) =
𝐻𝜎
2
𝑐𝑜𝑠ℎ(ℎ + 𝑧)
𝑠𝑖𝑛ℎ𝑘ℎ

𝑐𝑜𝑠(𝑘𝑥 − 𝜎𝑡) (2.55) 

𝑤(𝑥, 𝑧, 𝑡) =
𝐻𝜎
2
𝑠𝑖𝑛ℎ(ℎ + 𝑧)
𝑠𝑖𝑛ℎ𝑘ℎ

𝑠𝑖𝑛(𝑘𝑥 − 𝜎𝑡) (2.56) 

The code imposes incident solitary or linear waves by prescribing the associated free-surface 
elevation and velocity components as inlet boundary conditions based on the solitary wave equations or 
linear wave theory [28]. Herein, either the Boussinesq or the third-order Grimshaw equations are utilized 
to prescribe the wave characteristics at the inlet section. Each of these equations, the Boussinesq and the 
third-order Grimshaw equations, is valid for a certain range of normalized wave heights, i.e., Ɛ = H/h, 
where H is the wave height and h is the still water depth. More specifically, if Ɛ ≤ 0.25, the Boussinesq 
equation is applied; while for 0.25 < Ɛ < 0.5, the third order Grimshaw equation is applied. 
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Figure 2.4: Schematic of an incident solitary wave entering the computational domain from inlet cross-
section. (a) and (b) illustrate the longitudinal and cross-sectional views of the channel, respectively. h 
and H are the still water depth and wave height, respectively. The incident wave travels from left to right 
[28]. 

Using the third order Grimshaw equation, the free-surface elevation (η) and the velocity 
components in spanwise (X), vertical (Y), and streamwise (Z) directions are: 

𝑠 = sech	(
𝛼𝑧
ℎ )

(2.57) 

𝑞 = 𝑡𝑎𝑛ℎ	(
𝛼𝑧
ℎ )

(2.58) 

𝑧 = 𝑍 − 𝐶𝑡 (2.59) 

𝛼 =
√3𝜖
2
(1 −

5
8
𝜖 +

71𝜖%

128
) (2.60) 

𝐶 = @𝑔ℎ(1 + 𝜖 −
𝜖%

20
−
3𝜖:

70
) (2.61) 

η(Z, t) = À𝜖𝑠% −
3

4(𝜖𝑠𝑞)% + 𝜖
:(

5
8(𝑠𝑞)% −

101
58 𝑠g𝑞%)Á (2.62) 

𝑤
@𝑔ℎ
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𝑉
@𝑔ℎ

=
𝑌𝑞√3𝜖
ℎ Ä−𝜖𝑠% + 𝜖% Â

3𝑠%

8 + 2𝑠g + �
𝑌
ℎ�
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6 −
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𝑌
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The Boussinesq equation for small amplitude solitary wave: 

η(Z, t) = H[sech	(È
3
4
𝐻
ℎ
𝑧
ℎ
)]% (2.65) 
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𝑤
@𝑔ℎ

= Ä𝜖 + 3𝜖% + Â
1
6
−
1
2 �
𝑌
ℎ�

%
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η
𝐻
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9
4�
𝑌
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%

](
η
𝐻
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𝑣
@𝑔ℎ

=
𝑌η√3𝜖
ℎ% tanh	(È

3𝜖
4
𝑧
ℎ) × Ä1 +

1
2 𝜖

Â1 −
7η
𝐻 − �

𝑌
ℎ�

%

(1 −
3η
𝐻 )

ÃÊ (2.67) 

𝑢 = 0 (2.68) 
where C is the wave speed, u, v, and w are the velocity components in the spanwise (X), vertical (Y), 
and streamwise (Z) directions.  
The sponge layer method for dissipating the waves at the boundaries reads as follows [29]: 

𝑆!(𝑥, 𝑦, 𝑡) = −[𝜇𝐶V𝑢! + 𝜇𝐶-𝑢!|𝑢!|]
𝑒𝑥𝑝 Î�𝑥i − 𝑥𝑥i

�
++
Ï

𝑒𝑥𝑝(1) − 1
	for	(𝑥V − 𝑥i) ≤ 𝑥 ≤ 𝑥V (2.69) 

where xV denotes the starting coordinate of the source region, xl is the length of the source region, and 
CV, C-, and nl are coefficients to be determined empirically. 
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Chapter 3  

Getting Started 
 

In this chapter, we describe how to install the libraries required for VFS-Geophysics, how to run a 
simulation case and how to post-process the results. 

3.1 Installing PETSC and Required Libraries 
VFS-Geophysics is implemented in C and is parallelized using the Message Passing Interface (MPI). 
The Portable, Extensible Toolkit for Scientific Computation (PETSC) libraries are used for the code 
organization and to facilitate its parallel implementation. Also, we use the library HYPRE for solving 
the Poisson equation. Before the code can be compiled, the following libraries must be properly installed: 

• PETSC version 3.1-p8 
• Blas and Lapack 
• openmpi 
• HYPRE 

 When installing the PETSC libraries there is the option to install the other required libraries 
automatically in the case that they are not already on the computer. The PETSC web page [30] 
(http://www.mcs.anl.gov/petsc/documentation/installation.html) gives a detailed description on how to 
install all of these libraries. We briefly outline the steps for installing PETSC in the command line of a 
Linux machine in the case that none of the aforementioned libraries have been previously installed: 

1. Create a directory where to download the PETSC source files: 
mkdir source 

2. Create the installation directory: 
mkdir system 

3. Download the PETSC source code from the PETSC server in the source folder: 
wget http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-3.1-p8.tar.gz 

4. Unzip the PETSC source code in the source folder: 
tar xvfz petsc-3.1-p8.tar.gz 

5. Execute the PETSC configuration script: 
./config/configure.py --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 --download- 
f-blas-lapack=1 --download-f2f2cblaslapack=1 --download-hypre=1 --with-shared- 
libraries=0 --with-debugging=0 --with-x=0 

6. If the previous action executes successfully, PETSC will print on the screen the subsequent steps. 

 Note that PETSC can be installed with the debugging option either active or inactive. It is 
recommended that PETSC be installed without debugging because it will be used in production mode. 
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The PETSC installation with debugging may be needed for developing purposes, but it compromises the 
speed of the code. 

3.2 Compiling the Code 

To compile the code and generate an executable file we include a file named “makefile”. This file can 
work for any Linux-based computer without being modified. It basically links all the source code files 
(*.c, *.h) and the necessary libraries (PETSC, HYPRE, etc.). Given that on every computer the compiler 
libraries are located in different directories, the user has to designate the directory location as with the 
following user dependent information: 

1 CC = mpixx 
2 PETSC = /Your_Petsc_Library/ 
3 HYPRE = /Your_Hypre_Library/ 
4 TEC360HOME = /Your_Tecplot_Library/ 
5  
6 Required_Library_Flags = -lpthread -lrt -ldl -lstdc++ -lgfortran -l:libpetsc.a -llapack -lblas 
7 Source Code = /Source_Code_VFS-Geophysics/ 

 
If all libraries have been successfully installed and properly referenced with appropriate flags in 

the “makefile”, the code should compile by typing the following command in the Linux shell: 
make 
Alternatively, one can add the option -j to increase the computation speed by taking advantage 

of the several processors as follows: 
make -j #of Processors involving in the compilation 
Either of the last two commands will generate the executable source file “vfs-geophysics”. 
In addition to the executable file for running the code, it is also necessary to compile the 

executable file for post-processing the resulting output data. The post-processing file can generate result 
files in both Tecplot format (.plt). 

Compiling the Post-Processing File 

In addition, one needs to download the library file “libtecio.a” from the tecplot library webpage 
(http://www.tecplot.com/downloads/tecio-library/) and to add it to the code directory. The post-
processing file named “data” should then be created with the following command: 
 make data 

3.3 Running VFS-Geophysics 

3.3.1 File Structure Overview 

All the files that are necessary for running VFS-Geophysics should be in a user-defined folder. The 
required input files are the following: 
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grid.dat or xyz.dat The structured mesh for the fluid domain. 
 
bcs.dat The option file for setting the BCs of the fluid boundaries. 
 
vfs-geophysics Executable file obtained upon code compilation. 
 
Submission script The Linux script for submitting the job in a Linux based cluster. If the executable 
file “vfs-geophysics” is in another folder, the user has to define the executable file path.  
 
control.dat The file containing most of the control options. 
 
ibmdata00, ibmdata01, etc. The mesh files for the immersed bodies, if any. 
 
data The post-processing executable file 
 
 When the fluid-structure interaction is involved in the simulation, the following files should be 
added: 
 
fsi-rot.dat allows users to define the position and angular velocity of the immersed bodies. 
 
 If the user would like to implement the actuator models, the following files are necessary: 
 
acldataX file is an ASCII data file containing the mesh of the turbine model. When using the actuator 
line model, the file consists of n segments, where n is the number of rotor blades. 
 
acddataX file is a UCD formatted triangular mesh of the actuator disk. The file is the same with the 
Urefdata file. 
 
acsdataX file is an ASCII data file containing the mesh of the turbine model. When using the actuator 
surface model, the surface for the blades can be imported into the simulation. 
 
Urefdata is a UCD formatted triangular mesh of disk. The purpose of this file is to compute the inflow 
reference velocity required for both the actuator models. 
 
Turbine.inp is a text file containing input parameters used by the rotor model. 
 
Nacelle.inp is a text file containing input parameters used by the rotor model with nacelle. 
 
nacelle000_ is a UCD formatted triangular mesh of nacelle geometry. 
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Aerodym000_00, etc. These files contain the lift and drag coefficients at each profile along the turbine 
blades when using the actuator models. 
 
FOIL000_00, FOIL000_01, etc. These files contain the angle of attack and chord length for each profile 
used along the turbine blades when using the actuator models. 
 
 When the actuator models are used, the following folder should be created:  
 
ForceAOA Forces over the blade will be stored into this folder as files ForceAOA_TimeStep_XX, 
where XX is the index of each turbine. 
 

The fluid grid file, the immersed bodies grid files, the boundary conditions file, the control file 
and the files containing fluid-structure information are described extensively in Section 4.2.  

The remainder of this chapter describes the compiling process for obtaining the executable vfs-
geophysics file, and the submission script for running the code. 

3.3.2 Execute the Code 

Each cluster may have different job resource manager systems although the most common is PBS. If it 
is not PBS, your system manager may provide instructions about the resource manager in use.  There is 
ample documentation online as well. 

In the case that your system uses the PBS system, the user can submit a job in the cue with the 
example script shown below: 

1 #!/bin/bash 
2 ### Job name 
3 ### Mail to user 
4 #PBS -k o 
5 #PBS -l nodes=1:ppn=16 
6 #PBS -l walltime=4:00:00 
7 #PBS -j oe 
8  
9 cd $PBS_O_WORKDIR 
10 mpirun –bind-to core /Your_Executable_File_Path/vfs-geophysics &> err  

 
In the script above, the job will use 1 node of 16 cpus per node (ppn). The job maximum duration 

will be 4 hours (walltime). The name of the file executed is “vfs-geophysics”, and the on-screen 
information will be stored in the “err” file.  

The command for submitting this script is 
  qsub script_name.sh 
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One can check the status of the job 
  showq 

To finalize the job type 
  qdel job_id 

3.3.3 Simulation Outputs 

vfieldX.dat, ufieldX.dat, pfieldX.dat, nvfieldX.dat, lfieldX.dat, cs_X.dat 
These are binary files containing the flow variables at the whole computational domain at a given 
time step indicated by “X”. These files will be exported at every “tio” time step, where “tio” is a 
control option. The content in each of these files is summarized in Table 3.1. 

Table 3. 1: Description of the instantaneous output results 

File Name Containing variable Description of the Variable 
vfieldX.dat Ucont Contravariant velocity components (fluxes) 
ufieldX.dat Ucat Cartesian velocity components 
PfieldX.dat P Pressure field 
nvfieldX.dat Nvert If IB is used, it indicates the classification of nodes. 

3 is the structure node, 1 is the IB node, and 0 is the 
fluid node. 

lfieldX.dat level The distance function used in the level-set method 
to track the interface. 

Cs_X.dat Cs The eddy viscosity coefficient when using LES. 
 
Converge_dU 

This text file contains the following information: 
• The first number displayed in each of the lines is the time step number. 
• Second column is the algorithm that the line refers to (momentum, poisson, 

IBMSEARCH0X) 
- Momentum: Momentum equation solver. 
- Poisson: Poisson solver for the second step of the fractional step method. 
- IBMSEARCH0X: Refers to the searching algorithm for node classification when at 

least one immersed body is present, and X is the immersed body’s number. 
• The third column is the computational time in seconds needed to complete the algorithm. 
• The fourth column, if any, is the convergence of the corresponding solver. In the case of 

the Poisson solver the convergence is the maximum divergence and is indicated with 
“Maxdiv=”. 

Kinetic_Energy.dat 
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This file exports a text file with two columns. The first column displays the time step, and the second 
column the total kinetic energy of the whole computational domain calculated as follows. 

𝐾𝐸 = 	]]]𝑢!"$% + 𝑣!"$% +𝑤!"$%
3,

$mV

,

3*

"mV

3-

nmV

(3.1) 

Where 𝑁!, 𝑁" and 𝑁$ are the number of grid nodes in the I, j and k directions, respectively, and 𝑢!"$, 
𝑣!"$  and 𝑤!"$ , are the Cartesian velocity components computed at the cell centers. The function 
KE_Output is responsible for creating this file. 

FSI_position00, FSI_position01, etc 
This is a text file containing information about the immersed body location, velocity, and forces for 
the linear degrees of freedom in the x, y, and z direction. It consists of 10 columns as follows: 

𝑡𝑖𝑜, 𝑌? , 𝑌̇? , 𝐹? , 𝑌N , 𝑌̇N , 𝐹N , 𝑌8 , 𝑌̇8 , 𝐹8 (3.2) 
where 𝑡𝑖o is the output time step defined by the user, Y is the body position with respect to its initial 
position, 𝑌̇ is the body velocity, and F the force that the fluid imparts to the immersed body. If 
multiple immersed bodies are used, the code will print a file for each of the bodies, labeled with the 
body number. 

FSI_Angle00, FSI_ Angle01, etc 
This output file is similar to the FSI_position file, but for the rotational degrees of freedom. It 
contains information about the immersed body rotation angle and angular velocity of the body. It 
consists of 7 columns as follows: 

𝑡𝑖𝑜, Θ? , Θ̇? , 𝑀? , ΘN , Θ̇N , 𝑀N , Θ8 , Θ̇8 , 𝑀8 (3.3) 
where tio is the output time step, Θ is the body rotation with respect to its starting position and Θ̇ is 
the body angular velocity. If multiple immersed bodies are used, the code will print a file for each of 
the bodies, labeled with the body number. 

Force_Coefficient_SI00, Force_Coefficient_SI01, etc. 
This text file contains information about the forces that the fluid imparts to the immersed body in the 
three linear degrees of freedom, x, y, and z. The file has 10 columns with the following data: 

𝑡𝑖, F? , FN , F8 , 𝐶o? , 𝐶oN , 𝐶o8 , A? , AN , A8 (3.4) 
where 𝑡𝑖 is the time step number, 𝐹denotes the fluid force applied to the body, Co is the normalized 
force coefficient, and Ap is the area of the body projected in the corresponding direction which has 
been used for computing Co. Again, a different file is exported for each additional immersed body. 

Momt_Coefficient_SI00, Momt_Coefficient_SI01, etc. 
This file is equivalent to Force_Coeff_SI00 but in the rotational degrees of freedom. The information 
exported is the following: 

𝑡𝑖, M? , MN , M8 (3.3) 
where 𝑡𝑖 is the time step number and 𝑀 denotes the moments applied to the structure. 

Power_SI00, Power_SI01, etc. 
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This file can be used to obtain the power production over the immersed body. The following 
parameters are exported: 

𝑡𝑖, 𝜂, P? , PN , P8 , F8 , A0p4q# (3.4) 
where 𝑡𝑖 is the time step number, 𝜂 is the efficiency, 𝑃 denotes the power produced by the fluid over 
the immersed body and A0p4q# is the total area. 

surfaceX_0.dat, surface_1.dat. etc. 
These are tecplot ASCII files containing the surface of the corresponding IB body at the time step 
indicated at the first number of the file name. It basically contains the x, y, and z coordinates of the 
nodal points of the triangular mesh. 

surface000_X.vtk, surface001_X.vtk, etc. 
The surface of the corresponding IB body at the output time step can be recreated in the files which 
are available to read by Paraview with vtk extension. 

DATA_FSIX_00.dat, DATA_FSIX_01.dat, etc. 
At every “tiout” time step, it exports the immersed body motion information in the file. It is especially 
important while restarting the simulation. 

3.3.4 Post-Processing 

Once VFS-Geophysics reaches a time step at which data are output (multiple of “tio”, or output time 
step), the output file can be post-processed. Post-processing consists of converting the output files 
(ufieldX.dat, vfieldX.dat, pfieldX.dat, nvfieldX.dat, lfieldX.dat, etc), which are in binary form, to a 
format which is readable for visualization software such as TecPlot360. 
Create plt Files 
To post-process the data, the executable “data” should be used with the following command: 

𝑚𝑝𝑖𝑟𝑢𝑛	/Your_Executable_File_Path/𝑑𝑎𝑡𝑎	 − 𝑡𝑖𝑠	0	 − 𝑡𝑖𝑒	50000	 − 𝑡𝑠	100 
where -tis is the start time step, -tie is the end time step and -ts is the time step interval at which the files 
were generated. 

The above step will generate some number of result files for each timestep, compatible with 
tecplot and with names similar to ResultX.plt where X indicates the timestep. The .plt file can be opened 
in tecplot and worked upon. 

The following webpage contains several tutorials in flash video on how to use tecplot: 
http://www.genias-graphics.de/cms/tp-360-tutorials.html. 
 
 
Averaged results 
By default, the plt files contain instantaneous data results even if the code has performed averaging of 
the results (-averaging set to 1, 2, or 3 at the time that the code is executed). To include the averaged 
results in the post-processed file, the option -avg needs to be activated when executing the file ``data".  
The option -avg can be set to 1, 2, and 3, depending on the amount of information to be included in the 
post-processed file, having an impact on the overall file size. If -avg is set to 1, the post-processed file 
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contains only averaged velocity and turbulence intensities (U, V, W, uu, vv, ww, wv, vw, uw); if it is set 
to 2, the post-processed file contains the same as the case for -avg 2 plus the averaged pressure and 
pressure fluctuations; and if it is set to 3, the file contains the same variables as in -avg 2 plus averaged 
vorticity. Note that for post-processing the data using options -avg 2 and 3, the code should be executed 
using the option -averaging with a value equal to or greater than the -avg value. An example on how to 
process averaged results is as follows: 

𝑚𝑝𝑖𝑟𝑢𝑛	/Your_Executable_File_Path/𝑑𝑎𝑡𝑎		 − 𝑡𝑖𝑠	0	 − 𝑡𝑖𝑒	50000	 − 𝑡𝑠	100	 − 𝑎𝑣𝑔	1 

3.3.5 The Post-Processed File 

Instantaneous Results 
The variables of the post-processed results file are summarized in Table 3.2. 
Table 3. 2: Description of the instantaneous output results in the postprocessed file 

Variable Description 
X, Y, Z Coordinates of the fluid grid 
U, V, W Velocity components at the grid cell centers 
UU Velocity magnitude 
P Pressure field 
Nvert If IB is used, it indicates the classification of nodes. 3 is the structure node, 1 

is the IB node, and 0 is the fluid node. 
 
Averaged results 
The variables of the post-processed results file are summarized in Table 3.3. 
Table 3. 3: Description of the time averaged output results in the post-processed file 

Variable Description 
X, Y, Z Coordinates of the fluid grid 
U, V, W Velocity components at the grid cell centers 
uu, vv, ww, uv, uw, vw Turbulence intensities 
P Pressure field 
Nvert If IB is used, it indicates the classification of nodes. 3 is the 

structure node, 1 is the IB node, and 0 is the fluid node. 
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Chapter 4 

Code Input Parameters 
 

4.1 Units 

The Navier-Stokes equations are solved in the dimensionless form. In this case, it is recommended to set 
both the domain’s reference length and the flow’s reference velocity equal to one. 

4.2 VFS code Input Files 

The VFS code requires several input files that must be stored by default at the case’s directory. The input 
files are the following: 

control.dat 
bcs.dat 
grid.dat 
Turbine.inp 
Nacelle.inp (if nacelle model is in use) 
ibmdata00, ibmdata01, ibmdata02, etc. (if IB method is in use) 

4.2.1 The control.dat File 
The file control.dat is a text file that is read by the code upon initiation. It contains most of the input 
variables for the different modules of the code. The order in which the different options are included in 
the control file is not relevant; however, it is recommended to group the options in the listed categories. 
The control options start with a dash “-” symbol. If for any case the same option is stated twice, the code 
takes the last value in the file. If the user wants to keep an option in the control file for later use, it can 
be commented by typing a “!” sign at the start of the line. 

Time Related Options 
dt (double) 

Time step size for the solution of the Navier-Stokes equations. The CFL number must be 
smaller than 1. Values less than 0.5 are recommended. 

tio (int) 
The code exports the complete flow field data at each time step that is a multiple of this 
parameter’s value. 

totalsteps (int) 
Total number of time steps to run before ending the simulation. 

rstart (int) 
This option is activated to restart a simulation. The value given to this parameter is the time step 
number at which the simulation is restarted. This option can only be used if a previous 
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simulation’s results are in the same folder. Note that even if the value is set to zero, the simulation 
is restarted from a previous run; in that case, from a zero time step. 

rstart_fsi (int 0, 1) 
This parameter can be used when restarting a simulation with rstart active and when using the 
FSI module. If rstart_fsi is set to 1, the code reads the file FSI_DATA corresponding to time step 
rstart. This file contains information regarding body motion such as body position, velocity, 
forces, etc. 

delete (int 0, 1) 
If this option is set to 1, the code only keeps the result files from the two last exported time steps 
in the hard drive, deleting the files from previously exported time steps. 

averaging (int 0, 1, 2, 3) 
If this parameter is set to 1, 2, or 3, the code performs time averaging of the flow field. Time 
averaging is typically started when the flow field is fully developed; this occurs when the kinetic 
energy of the flow is stabilized. Therefore, averaging is a two-stage process. In the first stage, 
the simulation is started with the averaging option set to zero and advanced to a point at which 
the flow is developed. In the second stage, the flow results from stage 1 are used to restart the 
simulation and start the averaging. The first step to do in stage 2 is to rename the flow field files 
to be used from stage 1 (ufieldXXXXXX.dat, vfieldXXXXXX.dat, ...) to the file name 
corresponding to time step 0 files (ufield000000.dat, vfield000000.dat, ...). Then, the simulation 
can be restarted by activating the averaging option and setting the rstart option to 0 (restart from 
time step 0). The reason that the files must be renamed is because of the way in which the code 
performs averaging. The code uses the current time step for dividing the velocity sum and 
obtaining the averaged results. Thus, if averaging is started at a non-zero time step, the number 
of velocity summands will not correspond to the current time step number and the average will 
not be correct. As long as the averaging has been started at time step zero, restarting the 
simulation during stage 2 poses no problem. The non-zero values for this parameter refer to the 
amount of information that is averaged and exported to the results files. If average is set to 1, 
only averaged velocities (U, V, and W) and turbulence intensities (uu, vv, ww, uw, vw, uv) are 
processed. If the parameter is set to 2, in addition to the averaged velocities and turbulence 
intensities, the averaged pressure and pressure fluctuations are computed. Finally, if the 
parameter is set to 3, the processed variables include the variables from option 2 and the averaged 
vorticity vector. As already indicated in section 3.3.4, to post-process the results and include the 
averaged results to the output file, the option “avg” must be activated. The value given to “avg” 
should be lower or equal to the value given to the option “averaging”. 

 

 

Options for Boundary Conditions 
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inlet (int) 
The inlet option defines the inflow profile type when the inlet plane is set to inflow mode (see 
bcs.dat description). It also sets the velocity initial conditions to the one corresponding to the 
inlet profile. 
1: Uniform inflow with velocity value determined by the option flux. 
13: This option is used for performing channel flow simulation. It sets the velocity initial 
condition to follow a log law. The domain height (channel half height) must be set to 1. 
100: Imports inflow from external file. The external files must have a cross-plane grid geometry 
equivalent to the one of the current simulation grid. 

perturb (int 0, 1) 
If a non-zero initial condition is given, this option perturbs the initial velocity by adding random 
velocity values which are proportional to the local streamwise velocity component. 

wallfunction (int) 
Apply wall model at the walls of the immersed bodies. Basically, it interpolates the velocity at 
the IB nodes using a wallfunction. 

ii_periodic, jj_periodic, kk_periodic (int 0,1) 
Consider periodic boundary conditions in the corresponding direction. When this option is 
chosen in the control file, the corresponding boundaries in bcs.dat must be set to any non-
defined value such as 100. 

flux (double) 
0: Sets the velocity at the inlet boundary to 1. 
Non-zero value: Sets the flux at the inlet boundary. The flux is defined as the bulk inlet velocity 
divided by the area of the inlet cross-section. 
-1: Sets the velocity at the inlet boundary as 1, which is non-dimensional 

Modelling Options and Solver Parameters 
les (int 0,1,2) 

A nonzero value activates the LES model. 
1: Smagorinsky - Lilly model. 
2: Dynamic Smagorinsky model (recommended). 

rans (int 1,2,3) 
1: Using low Reynolds number version of Wilcox [38] 𝑘 − 𝜔 model 
2: Using high Reynolds number version of Wilcox [38] 𝑘 − 𝜔 model 
3: Using Menter [39] 𝑘 − 𝜔 SST model. 

imp (int 1,2,3,4) 
Type of solver for the momentum equation. The only value supported is 4 which corresponds to 
the Implicit solver. Other values correspond to obsolete approaches and are not guaranteed to 
work. 

imp_tol (double) 
Tolerance for the momentum equation. A value less than or equal to 1.0e−5 is recommended. 
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poisson (int -1,0,1) 
Selection of the Poisson solver. The only value supported is 1. Other values correspond to 
obsolete approaches and are not guaranteed to work. 

poisson_it (int) 
Maximum number of iterations for solving the Poisson equation. If the tolerance set by the option 
poisson_tol is reached, the Poisson solver is completed before reaching poisson_it iterations. 

poisson_tol (double) 
Tolerance for the flow’s maximum divergence.  

ren (double) 
This parameter defines the Reynolds Number in the case of non-dimensional simulations. 

inv (int 0,1) 
1: Neglects the viscous terms in the RHS of the momentum equation, and thus the flow is 
considered inviscid. 

Immersed Boundary Method Options 
imm (int 0,1) 

Activate the immersed boundary method. The code will expect a structural mesh (ibmdata00). 
body (int) 

If using the immersed boundary method, this parameter determines the number of bodies 
considered. There must be the same number of IB meshes (e.g., ibmdata00, 
ibmdata01,...,ibmdataXX, where XX is the number of bodies). 

thin (int) 
Option for simulating bodies with very sharp geometries where the resolution is not fine enough 
to resolve the depth. 

x_c, y_c, z_c (double) 
Initial translation of the immersed body position. 

Fluid-Structure Interaction Options 
fsi (int 0,1) 

1: Activates the ability to move the structure in a single translational DoF. Select the desired DoF 
by setting one of the following options to 1: dgf_ax, dgf_ay, or dgf_az. 

rfsi (int 0,1) 
1: Activates the ability to move the structure in a single rotational DoF. Select the desired 
rotational DoF by setting rotdir. 

rotdir (int 0,1,2,3) 
When rfsi is active, the parameter selects the axis of rotation. 
0: Rotation along the x axis. 
1: Rotation along the y axis. 
2: Rotation along the z axis. 
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3: Skewed in the XY plane. 
dgf_ax, dgf_ay, dgf_az (int 0, 1) 

In the case of a single translational DoF (fsi 1), the desired translational DoF is specified by 
setting one of these to 1.  
When using fsi_6dof, multiple DoF can be activated. 

dgf_x, dgf_y, dgf_z (int 0, 1) 
In the case of a single rotational DoF (rfsi 1), the desired rotational DoF is specified by setting 
one of these to 1. 

str (int 0, 1) 
0: When either fsi or rfsi is active, the parameter uses the loose coupling algorithm. 
1: When either fsi or rfsi is active, the parameter uses the strong coupling algorithm.  

red_vel, damp, mu_s (double) 
Parameters to be used in the test case “VIV of an elastically mounted rigid cylinder”. 

x_r, y_r, z_r (double) 
Center of rotation in the rotational DoFs. 

Turbine Parameterization Options 
rotor_modeled (int 0, 1, 2, ..., 6) 

Activate the turbine modeling option with the following parameterization approach: 
1: Actuator disk model using the induction factor as input parameter. 
2: Option for development purpose. This option is currently obsolete. 
3: Actuator line model. 
4: Actuator disk model using thrust coefficient as an input parameter. 
5: Actuator surface model 
6: Actuator line model with an additional actuator line for computing the reference velocity. 

nacelle_model (int 0, 1, 2, ..., 5) 
Activate the nacelle modeling option with the following parameterization approach: 
1: The direct forcing immersed boundary method. 
2: The normal force is calculated by the direct forcing immersed boundary method as equation 
(2.46) whereas the tangential force is zero. 
3: The actuator surface model for nacelle. The tangential force is the desired shear. 
4: The actuator surface model for nacelle. The friction factor is calculated locally using shear 
stress from the last time-step. 
5: The actuator surface model for nacelle presented in section 2.4.4.2. 

turbine (int) 
Number of wind/ MHK turbines to be modeled. 

reflength_wt (double) 
The turbine’s reference length. The code will divide the imported turbine diameter from the 
mesh file and Turbine.inp by this amount. 
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r_nacelle (double) 
This parameter represents the turbine nacelle’s radius. The code will ignore the rotor effect 
within this radius. 

num_foiltype (int) 
Number of foil types used along the turbine blade. VFS code requires a description file named 
FOIL00, FOIL01, ..., for each foil type as described in Section $4.2.5. 

num_blade (int) 
Number of blades in the turbine rotor. 

refvel_wt, refvel_cfd (double) 
These parameters do not have any effect in the simulation and are only for normalizing the 
output profiles. One can set them to 1 for normalization when plotting the data. 

loc_refvel (int) 
Distance upstream of the turbine in terms of rotor diameter, where the turbine’s incoming 
velocity or reference velocity is computed. 

deltafunc (int) 
Type of smoothing function in which the pressure due to the rotor is applied [18]. 
0: A 2-point hat function 
6: A 2-point linear function 
7: A 2-point exponential function 
8: A smoothed 4-point piecewise function 
10: A smoothed 4-point cosine function 

halfwidth_dfunc (double) 
Half the distance for which the turbine effect is smoothed. The value is expressed in the number 
of grid nodes. 

NumberOfNacelle (Int)                              
Number of nacelles in your simulation 

NumNacellePerLoc (Int)                       
Number of nacelles in the same location  

reflength_nacelle (double) 
The nacelle’s reference length. The code will divide the imported nacelle diameter from the 
mesh file and Nacelle.inp by this amount.  

FixTipSpeedRatio (Int) 
Fixed tip-speed ratio in rotor model. 

dhi_fixed, dhj_fixed, dhk_fixed (double)    
Width of the discrete delta function. 

fixturbineangvel (Int)      
Fixed angular velocity 

rstart_turbinerotation (Int)    
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If activated, it reads the turbine rotation restart file. Restart turbine rotation (should restart 
change to one upon sims. restart) 

 
Level Set Method Options 
levelset (int 0,1) 

Activates the levelset method. If used, the solved Navier-Stokes equations are in dimensional 
form. 
dthick (double) 

If using the level set method, this parameter defines half the thickness of the air/water interface. 
The fluid properties adopt their corresponding value in each phase and vary smoothly across this 
interface. Typical values adopted by “dthick" are on the order of 2 times the vertical grid spacing. 
Larger values may be necessary in extreme cases. 
sloshing (int 0, 1, 2) 

Sets the initial condition of the sloshing problem in a tank and exports to a file (sloshing.dat) 
the free surface elevation at the center of the tank. 

1: Sets the initial condition for the 2D sloshing problem in a tank. 
2: Sets the initial condition for the 3D sloshing problem in a tank. 
0: Sloshing problem is not considered. 

level_in (int 0, 1, 2) 
Flat initial free surface with elevation defined by level in height. 
1: The free surface normal is in the z direction. 
2: The free surface normal is in the y direction. 

level_in_height (double) 
When the level in option is active this parameter determines the free sur- 
face vertical coordinate which is uniform. 

fix_level (int 0,1) 
1: The free surface is considered but kept fixed. In this case, the level set equation is not solved. 

fix_outlet, fix_inlet (int 0,1) 
When using inlet and outlet boundary conditions, activating any of these parameters will keep 

constant the free surface elevation at the corresponding boundary. 
levelset_it (int) 

Number of times to solve the reinitialization equation for mass conservation. A higher number 
may be useful in cases involving high curvature free surface patterns. 
levelset_tau (double) 

Parameter to define the pseudo-time step size used in the reinitialization equation. The pseudo 
time step is levelset tau times the minimum grid spacing. 
rho0, rho1 (double) 

Density of the water and the air respectively. 
mu0, mu1 (double) 
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Dynamic viscosity of the water and the air respectively. 
stension (int 0,1) 

If active it considers the surface tension at the free surface interface. 
inlet_y (double) 

depth of the background grid at the inlet 
outlet_y (double) 

depth of the background grid the outlet. 
 
Wave Generation Options 
solitary_wave (Int 0,1,2) 

Activates the wave generation at the inlet boundary condition. 
0: wave generation is not activated. 
1: solitary wave is generated at the inlet. 
2: linear wave is generated at the inlet 

ti_start_solitary_wave (Int) 
Time that solitary wave starts propagating. 

inlet_bed_elevation (double) 
height of the bed elevation at the inlet. To calculate the water depth, this parameter should be 

subtracted from the inlet_y. 
inlet_z_for_solitary_wave (double) 

the z location of the solitary wave to start. 
solitary_wave_amplitude (double) 

solitary wave height (H). 
ti_start_linear_wave_single (Int) 

Time that linear wave starts propagating. 
inlet_z_for_linear_wave_single (double) 

the z location of the solitary wave to start. 
linear_wave_single_amplitude (double) 

Linear wave height (H). 
linear_wave_single_number (double) 

wave number (k). 
wave_sponge_layer (int 0, 1, 2, 3, 4, 5) 

0: Sponge layer is not used 
1: Sponge layer method is only applied at the z boundaries. 
2: Sponge layer method is applied at both z and x boundaries. 
3: Sponge layer method is applied to water and air. 
4: Sponge layer method is applied to the water. 
5: Sponge layer method is applied at the water depth. 

wave_sponge_xs (double) 
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Length of the sponge layer applied at the x boundaries. 
wave_sponge_x01 (double) 

Starting x coordinate of the first sponge layer applied at the x boundary. 
wave_sponge_x02 (double) 

Starting x coordinate of the second sponge layer applied at the x boundary. 
wave_sponge_zs (double) 

Length of the sponge layer applied at the z boundaries. 
wave_sponge_z01 (double) 

Starting z coordinate of the first sponge layer applied at the z boundary. 
wave_sponge_z02 (double) 

Starting z coordinate of the second sponge layer applied at the z boundary. 

4.2.2 The bcs.dat File 

The bcs.dat file is another text file with information about the boundary conditions of the fluid domain 
boundaries. We denote the six boundaries as Imin, Imax, Jmin, Jmax, Kmin, and Kmax, corresponding 
to the starting and ending boundary in the i-, j- and k- directions. 
The format of the bcs.dat file is a single line with the 6 integers corresponding to each of the 
boundaries. This number can adopt the following values: 

Table 4.1: Options for the bcs.dat file  
Boundary condition type Value  
Slip Wall 10  
No slip wall 1  
No slip with wall modelling, smooth wall -1  
No slip with wall modelling, rough wall -2  
1Periodic boundary conditions 100  
1Inlet 5 1 
Outlet 4  

 
The bcs.dat file has the following aspect: Imin-value, Imax-value, Jmin-value, Jmax-value, Kmin-
value, Kmax-value. 
 
Example. Simulation case with slip wall at the Imin, Imax, Jmin, Jmax boundaries, and inlet and outlet 
along the k direction: 10 10 10 10 5 4 

 
1 Require additional information in the control file. Further details can be found in the corresponding section. 
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4.2.3 The Grid File 

The grid file (grid.dat) is formatted with the standard PLOT3D. The file can be imported in binary form 
or in ASCII form. For importing the grid in binary form, the option “binary” in the control.dat must be 
set to 1; otherwise, the code expects the ASCII form. 

Any grid generator software that can export PLOT3D grids may be suitable for VFS code. 
However, Pointwise is recommended. 

When creating the mesh, the user needs to pay attention to the orientation of two different sets of 
coordinate systems. The Cartesian components which are indicated in Figure 4.1 with x, y, and z, and 
the curvilinear components which are attached to the mesh and denoted as i, j, and k. Both coordinate 
systems should be right-hand oriented. 

The recommended axis combination between Cartesian components and grid coordinates is 
depicted in Figure 4.1. 

 
Figure 4.1: Axis orientation 

A third format type that VFS code can handle is “SEGMENT”. This format is suitable only for 
cases where the fluid mesh is Cartesian as the only information that the mesh file stores is the grid points 
of the three axes. An obvious advantage of this approach is that the mesh file size is much smaller than 
the “PLOT3D” formatted files. 

To use “SEGMENT” format, the grid file should be named “xyz.dat” and the option “xyz” in the 
control file should be set to 1. In the first three lines, the “xyz.dat” file contains the number of grid nodes 
of the mesh for each of the three axes 𝑁?, 𝑁N, and 𝑁8. The values are followed by the three coordinates 
of the points in the X axis, then the coordinates of the points in the Y axis, and finally the coordinates of 
the points in the Z axis as follows: 

𝑋?-, 𝑌?-, 𝑍?- 
𝑋?%, 𝑌?%, 𝑍?% 

… 
𝑋?3% , 𝑌?3% , 𝑍?3% 
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𝑋N-, 𝑌N-, 𝑍N- 
𝑋N%, 𝑌N%, 𝑍N% 

… 
𝑋N3& , 𝑌N3& , 𝑍N3& 

𝑋8-, 𝑌8-, 𝑍8- 
𝑋8%, 𝑌8%, 𝑍8% 

… 
𝑋83' , 𝑌83' , 𝑍83' 

 

4.2.4 The Immersed Boundary Grid File 

The immersed boundary method allows one or more immersed bodies to be incorporated into the 
computational domain. If more than one body is considered, by default, each body has its own body 
mesh and its name is ibmdata00 for the first body, ibmdata01 for the second body, etc. 

The body mesh is an unstructured surface mesh with triangular nodes. The format is the standard 
UCD. When generating an immersed boundary mesh, one needs to consider the following: 

● The triangular’s elements’ normal direction must point towards the flow. 
● In general, a triangular mesh with triangles of similar sizes as the fluid background mesh is 

recommended. If the immersed boundary is a flat wall, the triangular mesh may be coarser than 
the fluid mesh without loss of accuracy. 

4.2.5 The Files Required for the Turbine Rotor Model 

The Turbine.inp Control File 
The Turbine.inp file is a text file that contains the input parameters used by the rotor model. The file 
comprises two major columns: the first column contains the numbers for the parameters, and the other 
column contains the corresponding parameter names. For example, in one line, the integer is given as 3 
in the first column, and the parameter name is given as "num_blade" in the other column. Multiple 
parameters may be specified in one line for each column. For example, three double variables can be 
written in the first column with the corresponding translation parameters "x_c, y_c, and z_c" in the other 
column. For more information, a detailed example of the file is shown below:       
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----Turbine 1 ------ 
3 1                           num_blade num_foiltype 
8.0 2.5 0.8                 x_c y_c z_c 
1.12087e5  0.25        J_rotation r_rotor 
0 0.0425                    r_nearhubinflowcorrection r_nacelle 
0                            TPCntrl 
0 -2.5                         indf_axis Tipspeedratio 
0                                CT 
0 0 0                          CP_max TSR_max angvel_fixed 
0 0 0                          Torque_generator_max GeneratorSpeed_desired GearBoxRatio 
0 0 0                          K_proportional K_integral K_derivative 
0 0 0                          Ki_IPC angvel_axis_err_relax Kratio_torque 
0 0 0                          WindSpeed_rate WindSpeed_cutin WindSpeed_cutout 
0                            YawController 
1.0 0.0 0.0                   Yaw1 Yaw2 Yaw3 
0.0 0.0 0.0 1.0               Pitch1 Pitch2 Pitch3 Pitch_Min 

num_blade (integer) 

Number of blades. 

num_foiltype (integer) 

Number of airfoils description files (FOIL000_∗) for the blade. 

nx_tb, ny_tb, nz_tb (double) 

The turbine rotor plane’s normal direction. 

x_c, y_c, z_c (double) 

The turbine rotor’s initial translation. 

indf_axis (double) 

Induction factor for the actuator disk model (rotor model=1). 

Tipspeedratio (double) 

Tip speed ratio (TSR) for the actuator line model (rotor model=3,6). Negative TSR indicates that 
the turbine is rotating counterclockwise with respect to the streamwise axis. 

J_rotation (double) 

The rotor’s moment of inertia. It is used only when the option “turbinetorquecontrol” is active. 

r_rotor (double) 
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The turbine rotor’s radius. 

CP_max (double) 

The turbine’s maximum power coefficient. It is used only when the option “turbinetorquecontrol” 
is active. 

TSR_max (double) 

The turbine’s maximum TSR of the turbine. It is used only when the option. 

“turbinetorquecontrol” is active. 

angvel_fixed (double) 

The rotor’s rotational speed when the option “fixturbineangvel” is active. When the variable 
angvel_fixed is a negative value, the turbine is rotating counterclockwise with respect to the 
streamwise axis. 

Torque_generator (double) 

Turbine torque. Used only when the option “turbinetorquecontrol" is active. 
GeneratorSpeed_desired (double) 

Rated generator angular velocity. 

GearBoxRatio (double) 

Gear box ratio from the aerodynamic shaft to the generator shaft. 

K_proportional (double) 

PID controller proportional term constant. 

K_integral (double) 

PID controller integral term constant. 

K_derivative (double) 

PID controller derivative term constant. 

angvel_axis_err_relax (double) 

Angular velocity error relaxation constant. 

Kratio_torque (double) 

Proportional constant of the torque’s PID controller to the pitch control. 

WindSpeed_rated (double) 

The turbine’s rated wind/water speed at which it produces its rated power. 
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WindSpeed_cutin (double) 

Minimum wind/water speed at which the turbine produces power. 

WindSpeed_cutout (double) 

Maximum wind/water speed at which the turbine produces power. 

CT (double) 

Thrust coefficient used with rotor_modeled 4. 

r_nearhubinflowcorrection (double) 

=	𝑟+qr'##' 	+ 	2(𝑔𝑟𝑖𝑑	𝑠𝑝𝑎𝑐𝑖𝑛𝑔). If 𝑟	 < 	𝑟𝑛𝑒𝑎𝑟ℎ𝑢𝑏𝑐𝑜𝑟𝑟𝑐𝑡, the relative incoming velocity at 
the near radius location will be employed instead of locally computed. This is to avoid the 
effect of the actuator surface nacelle model on computing the relative incoming velocity in the 
actuator surface model for turbine blades. 

Pitch1, Pitch2, Pitch3 (double) 

Optimum pitch angle (region 2). 

Pitch_Min (double) 

 Minimal pitch angle for any of the pitches  
The Nacelle.inp Control File 
The Nacelle.inp file is a text file containing input parameters for the rotor model. The file has two 
lines. The first line is ignored by VFS code and only used for informative purposes by listing the input 
variable names. The second line is the control value corresponding to the variable listed in line 1 as 
shown in the example below: 
nx_tb - ny_tb - nz_tb - x_c - y_c - z_c - angvel_axis - rotate_alongaxis - frictionfactor - dh … 
1       0       0       8       2.5       0.8       0       0       0.4       0.02 …             
xnacelle_upstreamend - ynacelle_upstreamend - znacelle_upstreamend - r_nacelle 

  7.4       2.5       0.0       0.0425 

nx_tb, ny_tb, nz_tb (double) 

The nacelle plane’s normal direction. It is activated by setting the parameter from zero to one 

x_c, y_c, z_c (double) 

The nacelle’s initial translation. 

angvel_axis (double) 

The blade's angular velocity. 

rotate_alongaxis (int) 
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When activated, the nacelle is rotated about its axis. 

frictionfactor (double) 

Nacelle friction factor formula to parameterize the effects of surface geometry and near-wall 
turbulence from the empirical relation proposed by F. Schultz-Grunow [1] 

dh (double) 

The wall-normal thickness of the nacelle mesh. 

xnacelle_upstreamend, ynacelle_upstreamend, znacelle_upstreamend (double) 

The x- ,y- , and z-coordinates of nacelle's upstream end 

r_nacelle (double) 

Nacelle radius. 

The acldata000 Mesh File 
The acldata000 file is an ASCII data file that contains the turbine model’s mesh. In the case of the 
actuator line model, the file consists of n segments where n is the number of rotor blades as shown in 
Figure 4.2(a). The ASCII data file uses the SEGMENT format. 

In the case of the actuator disk model, the mesh is a UCD formatted unstructured triangular 
mesh, and the rotor is represented with a circle as shown in Figure 4.2(b). The actuator surface uses a 
file named acsdata000. The file is a triangular mesh in either Facet or UCD format and contains a two-
dimensional drawing of the blades with the corresponding chord variation along the radial direction 
(Figure 4.2c). 

The turbine center, o, of this mesh can be located directly at the actual position of the turbine or 
centered at the origin and later translated with the control options x_c, y_c, and z_c defined in the rotor 
model control file “turbine.inp”. 

In the actuator line model, the coordinate attached to the segment i must point towards the tip 
of the blade. In the actuator disk model, the direction normal to the rotor must point towards the 
direction of the flow. 

 
Figure 4.2: Representation of the “acldata000” mesh used to represent the blades in the (a) actuator 
line model, (b) actuator disk model and (c) actuator surface model. 
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The Urefdata Mesh File 
The Urefdata file is a UCD formatted triangular mesh equivalent to the actuator disk acddata file. The 
purpose of this file is to compute the inflow reference velocity required for both the actuator disk and 
actuator line models. 

The disk dimensions and normal direction in Urefdata must match the turbine rotor’s 
dimensions defined in “turbine.inp”. 

The code places the disk upstream of the actual turbine location. At each time step, the flow 
velocity is transferred to each triangular element of this mesh. By adding the velocity at all triangular 
elements and dividing by the disk’s surface, the code computes the turbine reference velocity (disk 
average velocity). For example, with the actuator line, the reference velocity is used for determining 
the simulation’s TSR. 

The Aerodym000_00, …, Aerodym000_XX Files 
These files contain the lift coefficients, drag coefficients, and torque coefficients at each profile along 
the turbine blades for the actuator line (rotor_model = 3,6) and for the actuator surface model 
(rotor_model=5). The first two lines in the file are descriptive and the third line defines the number of 
data points in the file. Starting at line 4, the angle of attack (column 1) in degrees and the corresponding 
coefficients are listed as shown in the example below. 

# Airfoil type: NACA0012  / NACA4412 HydroFoil From 0-20 
# Alpha(deg)   Cl   Cd     Cm 
145 
0    0.1853  0.03338 0 
1    0.3271  0.03668 0 
2    0.4248  0.04047 0 
3    0.5199  0.04474 0 
4    0.6076  0.04962 0 
5    0.6932  0.05489 0 
6    0.7625  0.06126 0 
8    0.8612  0.0769  0 

The FOIL00, FOIL01, FOIL02, ... Files 
These files contain the angle of attack and chord length for each profile used along the turbine blades for 
the actuator line (rotor_model = 3,6) and for the actuator surface (rotor_model=5). The first two lines in 
the file are descriptive and the third line defines the number of data points in the file. Starting at line 4, 
the distance from the blade section to the turbine hub in non-dimensional units or in meters (column 1), 
the profile chord length in non-dimensional units or meters (column 2), and the blade section angle of 
attack in degrees (column 3) are listed as shown in the example below. 
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# Cylinder 
# r(m)  chord (m)   twist (deg) 
12 
0    0.18 19.9 
0.06 0.18 19.9 
0.07 0.1725  17.45 
0.09 0.1575  13.44 
0.11 0.1425  10.32 
0.13 0.1275  7.85 
0.15 0.1125  5.82 
0.17 0.105   4.12 
0.19 0.09 2.65 
0.21 0.0825  1.35 
0.23 0.075   0.21 
0.25 0.0675  0 
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Chapter 5 

Library Structure 
5.1 The Source Code Files 

The source code is structured in several files with extension “.c” and one file with extension “.h”. The 
header file (variables.h) is included at the beginning of any other “.c” file and contains all the function 
prototypes, global variable definitions, and structure definitions. The “.c” files contain the subroutines 
which are generally grouped by code module. A brief description of the “.c” files is presented as follows: 
main.c 
 Main code file where the code is initialized and finalized. 
bcs.c 
 Subroutines for specifying boundary conditions. 
compgeom.c, ibm.c, ibm io.c, variables.c 
 Subroutines for the IB method 
fsi.c, fsi move.c 
 Subroutines for the FSI module 
data.c 
 Subroutines for post-processing and visualizing the results. 
wallfunction.c 
 Subroutines for the wall modeling 
rotor_model.c 

Contains all the subroutines that are necessary for simulating a wind/MHK turbine using the 
actuator disk, actuator line and actuator surface models. 

Turbinecontrol.c 
Contains subroutines for initializing wind/MHK turbine controller, calculating the rotational 
velocity of the turbine, etc. 

les.c 
Subroutines for the turbulent models using LES approach. 

k-omega.c 
Subroutines for the turbulent models using 𝑘 − 𝜔 method within RANS framework. 

solvers.c, implicitsolver.c, momentum.c, poisson.c, poisson hypre.c, rhs.c, rhs2.c, timeadvancing.c, 
timeadvancing1.c 

Contains all the subroutines used by the flow solver, including the momentum and the Poisson 
equations. 
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init.c 
Subroutines for initializing the code variables. 

metrics.c 
The subroutines for computing the grid Jacobian and metrics. 

level.c, distance.c 
Subroutines for simulating two-phase free surface flows with the levelset method.  

wave.c 
Subroutines for the wave module based on the inlet boundary condition. 

5.2 The Flow Solver 

To describe the basic elements of the flow solver we present a code flow chart of VFS-Geophysics, 
which displays the order in which the relevant functions of the code are called. This code flow chart 
corresponds to the simplest case that VFS-Geophysics can simulate, and no additional module is 
considered. An example would be to perform Direct Numerical Simulation of the channel flow case. 
As in any “c” code, the so-called main function is the entry point or where the software starts the 
execution. In the code flow chart presented below, the functions, emphasized in bold, are indented such 
that the functions from a lower level are called by the function of the above level. 

• main (pre-processing) 
In the first part of this main function, the code pre-processing is performed as 
follows: 

– MG_Initial 
Reads the structured grid file (grid.dat), partitions the domain within the CPUs, allocates 
memory for the main variables in a partitioned form. Also reads the boundary conditions 
file (bcs.dat). 

∗ FormMetrics 
Computes the metrics and Jacobians of the transformation given by equation (2.2). 

  – Calc_Inlet_Area 
Computes the inlet area corresponding to section k=0. The code was designed such that 
the streamwise direction is k. 

– SetInitialGuessToOne 
Sets the initial velocity of the whole computational domain at time=0 to a specific profile 
defined by the variable “inlet”. 

– Contra2Cart 
Using the Cartesian velocity components at the cell centers, the contravariant velocity 
components at the cell faces are calculated through interpolation. 
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• main (time iteration) 
At this point of the main function, the time-stepping loop starts. 

 
– Flow_Solver 
This function solves for the velocity and pressure fields to advance to time step ti+1. 

∗ Calc_Minimum_dt 
Calculates and prints the minimum time step size (dt) required such that the CFL 
number is equal to 1. 

∗ Pressure_Gradient 
Reads the pressure field and computes the pressure gradient. 

∗ Formfunction_2 
Forms the right-hand side of the momentum equation. 

∗ Implicit_MatrixFree 
Solves the momentum equation. 
∗ PoissonSolver_Hypre 
Solves the Poisson equation in the second step of the fractional step method to 
obtain the pressure correction. 
∗ UpdatePressure 
The pressure correction is applied to obtain the pressure field. 
∗ Projection 
Corrects the velocity to make it divergence free. 
∗ IB_BC 
Sets most of the boundary conditions. Note, however, that other functions such as 
“Implicit MatrixFree” and “Contratocart” also deal with a part of the boundary 
conditions. 

∗ Divergence 
Checks and prints the maximum divergence to the output file Converge_du. 

∗ Contra2Cart 
Using the Cartesian velocity components at the cell centers, the contravariant 
velocity components at the cell faces are calculated through interpolation. 

∗ Calc_ShearStress 
Computes and outputs the shear stress. 
∗ KE_Output 
Exports the total kinetic energy of the whole computational domain to the file 
Kinetic Energy.dat. 
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∗ Ucont_P_Binary_Output 

Writes the flow field results to files provided that the time step is a multiple of the 
control option “tiout”. 

• End of time-stepping loop 

– MG_Finalize 
This function is called right before ending the code to di-allocate all the memory created 
during the execution of the code. 

5.3 Code Modules 

In the present section the main functions used by the different modules of the code are reviewed. All 
modules follow a common structural pattern. First, a group of functions are called for pre-processing 
purposes. Then, a second set of functions is called with the purpose of advancing the solution in time. 

• Subroutines for pre-processing. Upon initiation of the program and before starting the time 
iteration, a set of functions is called to: (1) import the module specific input files (if any); and (2) 
initialize and allocate memory for the necessary variables. This process happens only once in the 
beginning of the main function located in the file “main.c”. 

• Subroutines for time advancing. After the initial pre-processing part is completed, the code is 
ready to start advancing in time. Then a second set of functions is used to compute, at every time 
step, the necessary elements involved in the corresponding module. This part is generally 
executed from the function Flow Solver located in “solvers.c”. 

5.3.1 The Large-Eddy Simulation (LES) Method Module 
• Subroutines for pre-processing. In this module the pre-processing basically consists of 

initializing the LES main variables. 

– MG_Initial Initializes the LES model main variables. 

• Subroutines for time advancing. Here the time-advancing involves computing the new eddy 
viscosity which is added to the diffusion term of the momentum equation. 

– Compute_Smagorinsky_Constant_1 Computes the Smagorinsky constant Cs 

– Compute eddy viscosity LES Computes the eddy viscosity µt by applying equation 
(2.41). 

– Formfunction_2 Adds the eddy viscosity term to the right-hand side of the momentum 
equation. 
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5.3.2 The Immersed Boundary (IB) Method Module 

• Subroutines for pre-processing. In this module the pre-processing consists of initializing the 
IB method variables and importing the IB mesh. 

– main Initializes the primary variables for the IB method. 

– ibm_read_ucd Reads and imports the body triangular mesh (ibmdata00, ibmdata01, 
...). 

– ibm_search_advanced Performs a classification of the fluid nodes depending on their 
position with respect to the structure. This classification is stored in the variable “nvert”. 
If nvert is 0, the node belongs to the fluid domain and the equations are solved; if nvert 
is 3, the node belongs inside the structural domain and the node is blanked from the 
computational domain; if nvert is 1, the node is an IB node, which belongs in the fluid 
domain but is located at the immediate vicinity of the structure. IB nodes are where the 
velocity boundary condition of the body is specified. 

– ibm_interpolation_advanced Computes the velocity boundary conditions at the IB 
nodes. This computation can be done using linear interpolation or using a wall model. 

∗ noslip Applies the no-slip-wall boundary condition using linear interpolation. 

∗ freeslip Applies the slip-wall boundary condition using linear interpolation. 
Used when the inviscid option is active. 

∗ wall_function  Applies a wall model assuming a smooth wall. Used when the 
option wallfunction is active. 

∗ wall_function_roughness Applies a wall model assuming a rough wall. Used 
when the wallfunction option is active and rough set is specified. 

• Subroutines for time advancing. The time-advancing part depends on whether the body is 
moving or not. While the velocity boundary condition at the IB nodes has to be recomputed at 
every time step, the classifications of nodes have to be recomputed only if the body is moving. 

– ibm_search_advanced This function does not need to be called if the body is not 
moving. If the body is moving, this function needs to be called at every time step to update 
the node classification once the body position has been updated. 

– ibm_interpolation_advanced The velocity at the IB nodes has to be updated at every 
time step. 
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5.3.3 The Fluid-Structure Interaction (FSI) Algorithm Module  

• Subroutines for pre-processing. In this module the pre-processing consists of initializing the 
FSI variables and applying an initial motion to the body. 

– FsiInitialize Initializes the variables for the body motion; either the motion is 
prescribed or determined using FSI. 

– FSI_DATA_Input Reads the external file “DATA FSIXXXXXX YY.dat”. 
(XXXXXX refers to the time step and YY to the body number). This process is necessary 
when the simulation is restarted. The option rstart fsi needs to be active. 

– Elmt_Move_FSI_TRANS This function applies a linear translation to the body mesh 
in a single DoF. The function is called when the single translational DoF module is in 
use. In the pre-processing, the function is used to apply an initial translation to the body 
either when starting the simulation or when restarting. 

– Elmt_Move_FSI_ROT This function applies a rotation to the body mesh in a single 
DoF. The function is called when the single rotational DoF module is in use. In pre-
processing, the function is used to apply an initial rotation to the body, either when 
starting the simulation or when restarting. 

∗ rotate_xyz6dof This function applies a rotation to a given point with respect to 
a center of rotation in the three axial directions. 

• Subroutines for time advancing. The time-advancing part depends on whether the body is 
moving or not. As already discussed for the IB method module, the velocity boundary condition 
at the IB nodes has to be recomputed at every time step, and the classifications of nodes has to 
be recomputed only if the body is moving. 

– Struc_Solver This function computes and updates the new position of the body. The 
function is called within the main function at every time step. 

∗ Calc_forces_SI Computes the force and moments that the fluid imparts to the 
body. 

∗ Forced_Motion Computes the position and velocity of the structure using the 
prescribed motion mode. Both the position and the velocity are specified through 
an analytic expression. Needs to be followed by a call to either the function 
Elmt_Move_FSI_TRANS or Elmt_Move_FSI_ROT_TRANS. 

∗ Calc_FSI_pos_SC Solves the EoM in a single translational DoF. Needs to be 
followed by a call to Elmt_Move_FSI_TRANS. 
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∗ Calc_FSI_Ang Solves the EoM in a single rotational DoF. Needs to be followed 
by a call to Elmt_Move_FSI_ROT. 

∗ Forced_Rotation Computes the rotation and angular velocity of the structure 
using the prescribed motion mode through an analytic expression. Needs to be 
followed by a call to Elmt_Move_FSI_ROT. 

∗ Note that after the motion has been applied to the body mesh, the function 
ibm_search_advanced needs to be applied to update the fluid mesh node 
classification. 

– FSI_DATA_Output At every “tiout” time step, it exports the body motion information 
in the file “DATA_FSIXXXXXX_YY.dat”. (XXXXXX refers to the time step and YY 
to the body number). 

5.3.4 The Rotor Turbine Modeling Module 

5.3.4.1 Actuator Disk Model 

The actuator disk model is activated by setting rotor modeled to 1 (the model input is the induction factor) 
or to 4 (the input is the thrust coefficient). 

• Subroutines for pre-processing. In the turbine modeling module, the preprocessing subroutines 
import the turbine model input file, and initialize the corresponding variables, allocating memory 
if necessary. Again, this process happens only once in the beginning of the main function located 
in the file “main.c”. 

– main Initializes variables and imports the turbine control file “Turbine.inp”. 

∗ disk_read_ucd Imports the disk mesh. The function is called first to import the 
actual turbine mesh, named acddata000, and then to import the disk mesh for the 
reference length, named Urefdata000. 

∗ Pre_process This function searches the fluid cells that are at the vicinity of the 
disk mesh, and it is called every time step provided that the disk changes its 
position. 

• Subroutines for time advancing. After the previous part is completed and the code starts 
advancing in time, the code computes the necessary elements involved in the turbine models at 
every time step, such as the interaction forces between the fluid and the turbine rotor or updates 
the new position of the rotor. These subroutines are called in the function Flow_Solver located 
in “solvers.c”. 

– Uref_ACL 
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Calculates the reference velocity (U ref). This value corresponds to the space averaged 
velocity along a disk of the same diameter as the rotor and located some distance upstream 
of the turbine. The value is multiplied by the disk normal that points downstream. 

– Calc_U_lagr 
Interpolates the velocity from the fluid mesh to the Lagrangian points at the rotor model 
mesh. 

– Calc_F_lagr 
Computes the actuator line forces at each element of the Lagrangian mesh. 

– Calc_forces_rotor 
Computes the overall turbine forces. 

– Calc_F_eul 
Transfers the forces from the Lagrangian mesh to the fluid mesh. 

5.3.4.2 Actuator Line Model 

The actuator line model is activated by setting rotor modeled to 3 (the reference velocity is computed 
within a disk located upstream of the turbine) or to 6 (the reference velocity is computed within a line 
mesh instead of a disk). 

• Subroutines for pre-processing. Equivalent to the actuator disk model with the difference that 
the turbine blades are represented with a one-dimensional mesh and the blade profile information 
is required. 

– main Initializes variables and imports the turbine control file “Turbine.inp”. 

∗ ACL_read_ucd Imports the actuator line mesh file named “acldata000”. 

∗ disk_read_ucd Imports the disk mesh file for computing the reference velocity 
named “Urefdata000”. 

∗ Pre_process This function searches the fluid cells that are at the vicinity of the 
actuator line mesh or the reference velocity disk/line mesh. The function is called 
every time that the disk/line mesh changes its position. 

∗ airfoil_ACL Imports the airfoil information. 

∗ TurbineTorqueControlInitialization Initialize wind/MHK turbine controller. 

• Subroutines for time advancing. 

– Uref_ACL 
Calculates the reference velocity (U ref) for the actuator line model. This value 
corresponds to the space averaged velocity along a disk of the same diameter as the rotor 
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and located some distance upstream of the turbine. The value is multiplied by the disk 
normal that points downstream. 

– Calc_turbineangvel 
Calculates the rotational velocity of the turbine based on the U ref velocity value. 

– rotor_Rot 
Applies a rotation to the turbine equivalent to the rotation velocity times the time step dt. 

– Pre_process 
Updates the new location of the turbine. 

– refAL_Rot 
Applies a constant rotation to the reference line located upstream of the 
turbine. 

– Export_ForceOnBlade 
Compute force at Lagrangian points using actuator line model. 

– Calc_U_lagr 
Interpolates the velocity from the fluid mesh to the Lagrangian points at 
the rotor model mesh. 

– Calc_F_lagr_ACL 
Computes the actuator line forces at each element of the Lagrangian mesh. 

– Calc_forces_ACL 
Computes the overall turbine forces. 

– Calc_F_eul 
Transfers the forces from the Lagrangian mesh to the fluid mesh. 

5.3.4.3 Actuator Surface Model 

The actuator surface model is activated by setting rotor_modeled to 5. 
• Subroutines for pre-processing. Equivalent to the actuator line model with the difference that 

the turbine blades are represented with a two-dimensional mesh and the blade profile information 
is required. 

– main Initializes variables and imports the turbine control file “Turbine.inp”. 

∗ surface_read_xpatch Imports the actuator surface mesh file named 
“acsdata000”. 

∗ ACL_read_ucd Imports the actuator line mesh file named “acldata000”. 
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∗ disk_read_ucd Imports the disk mesh file for computing the reference velocity 
named “Urefdata000”. 

∗ Pre-process This function searches the fluid cells that are at the vicinity of the 
actuator line mesh or the reference velocity disk/line/surface mesh. The function 
is called every time that the disk/line/surface mesh changes its position. 

∗ airfoil_ACL Imports the airfoil information. 

∗ calc_s2l Project surface elements to center line. 

∗ TurbineTorqueControlInitialization Initialize wind/MHK turbine controller. 

• Subroutines for time advancing 

– Uref_ACL 
Calculates the reference velocity (U_ref) for the actuator line model. This value 
corresponds to the space averaged velocity along a disk of the same diameter as the rotor 
and located some distance upstream of the turbine. The value is multiplied by the disk 
normal that points downstream. 

– Calc_turbineangvel 
Calculates the rotational velocity of the turbine based on the U_ref velocity value. 

– rotor_Rot 
Applies a rotation to the turbine equivalent to the rotation velocity times the time step dt. 

– bladepitch_Rot 
Computes blade pitch of the actuator surface. 

– Pre_process 
Updates the new location of the turbine. 

– Calc_U_lagr 
Interpolates the velocity from the fluid mesh to the Lagrangian points at the rotor model 
mesh. 

– Calc_F_lagr_ACL 
Computes the actuator line forces at each element of the Lagrangian mesh. 

– Export_ForceOnBlade 
Export force at Lagrangian points using actuator line model. 

– ForceProjection_l2s 
Project force from actuator line to surface. 
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– Calc_forces_ACL 
Computes the overall turbine forces. 

– Calc_F_eul 
Transfers the forces from the Lagrangian mesh to the fluid mesh. 

5.3.5 The Wave Generation Module 

The incoming incident wave at the computational domain's inlet cross-section is implemented by 
prescribing the velocity components (u, v and w) and free surface elevation at the inlet. 
 

• Subroutines for time advancing.  

- solitary_wave_inlet_velocity_profile_boussinesq 
The velocity components based on the Boussinesq or the third-order Grimshaw equations 
are calculated for each time at the inlet boundary. 

- solitary_wave_inlet_elevation_profile_boussinesq 
The free surface elevation based on the Boussinesq or the third-order Grimshaw equations 
is calculated for each time at the inlet boundary. 

- linear_wave_inlet_velocity_profile 
The velocity components based on the linear wave theory equations are calculated for 
each time at the inlet boundary. 

- linear_wave_inlet_elevation_profile 
The free surface elevation based on the linear wave theory equations is calculated for 
each time at the inlet boundary. 
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Chapter 6 

Applications 
 These test cases are for introducing and simulating turbine parameterization which is used in the 
code. First, the actuator model cases for turbine parametrization are introduced, and then turbine 
resolving simulation is implemented. The test case involves the simulation of the Kinetic Hydro-Power 
System (KHPS) turbines that will be used to harvest kinetic energy from the channel developed by 
Verdant Power. These are 3-blade axial turbines 5m in diameter. Details can be found in [35]. We 
propose the case with uniform inflow which makes the case simple as it does not require any precursor 
simulation. The boundary conditions at the top wall, is free slip, and at the bottom wall and side walls is 
no-slip. The bottom wall cannot be resolved with the current grid resolution and is treated with a wall 
model. 
 The tip speed ratio (TSR) is considered as 2.5 for actuator models and angular velocity is 
considered as 1 rad/s for turbine resolving case. The grid is uniform and the spacing is 0.02 units in all 
three directions which is equivalent to a grid size of 257×85×881. In contrast to the fluid mesh, the 
actuator models mesh (acddata for actuator disk, acldata000 for actuator line and acsdata000 for actuator 
surface) can be constructed with the real turbine dimenions and non-dimensionalized by setting the 
turbine reference length option “reflength_wt" in control.dat. This will divide the actuator model mesh 
dimensions by “reflength_wt". Alternatively, one could generate a rotor mesh already with the non-
dimensionalised units and choose “reflength_wt" equals to 1. The simulation is set with a unit non-
dimensional velocity as well, so that we can use “refvel_wt” in order to make the velocity non-
dimensionalized. 

6.1 Actuator disk model for blades with IB nacelle 

6.1.1 Case Definition 

This test case is for introducing and simulating the actuator disk model for turbine parameterization. A 
computationally intensive approach for studying the fluid dynamics of wind and MHK farms is to solve 
numerically the full Navier-Stokes equations with turbines parameterized with actuator disk models [8]. 
In the actuator disk model, a turbine rotor is represented by a permeable circular disk that is discretized 
using an unstructured triangular grid, as can be seen in the figure below.  
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Figure 6.1: Schematic of the actuator disk used in the simulation 

 A UCD formatted unstructured triangular mesh for the disk with the name of “acddata” should 
be in the simulation directory along with “Urefdata”, both of which are the same file but with different 
names. The tower and nacelle geometry are treated as sharp interface immersed boundaries, so that we 
can use CURVIB method, expressed in Ref. [1]. The tower and nacelle geometry can be seen in the 
figure below. 

 
Figure 6.2: Schematic of the tower and nacelle with the actuator disk used in the simulation 



57  

6.1.2 Main Case Parameters 

Since the main solver parameters have already been discussed in previous test cases [37], only the 
parameters related to the MKH turbine rotor model will be addressed. 
 The main parameters in the control file for setting this case are listed in Table 6.1. The parameters 
related to the MHK turbine rotor and nacelle model will be also addressed. When using the rotor model, 
the control options for setting the case are located not only in control.dat but also in Turbine.inp. The 
flow parameters are summarized in Table 6.1, with the rotor parameters in Table 6.2. The parameters in 
Turbine.inp that are not discussed in Table 6.2 are not used in the simulation.  
 
Table 6.1 Parameters in control.dat file for the MHK turbine 

Parameter Option in control file Value 
Time step size dt [s] 0.001 
Activate the actuator disk model  rotor_modeled  1.0 
Number of turbines turbine 1.0 
Reference length of the turbine reflength_wt 0.5 
Distance upstream of the turbine in rotor diameters 
where the turbine incoming velocity or reference 
velocity is computed 

loc_refvel 1.0 

Type of smoothing delta function deltafunc 10 
Delta function width in cell units halfwidth_dfunc 4.0 

 
Table 6.2 Parameters in Turbine.inp file for the MHK turbine 

Parameter Option in Turbine.inp file Value 
Number of blades in the rotor num_blade 3 
Number of foil types along the blade num_foiltype 1 
Normal direction of the turbine rotor plane. nx_tb, ny_tb, nz_tb 

or  
Yaw1, Yaw2, Yaw3 

1.0 0.0 0.0 

The turbine rotor initial translation. x_c, y_c, z_c 8.0 2.5 0.8 
Tip speed ratio Tipspeedratio -2.5 
Radius of the rotor corresponding to the 
acddata mesh 

r_rotor 0.5 

 
 For this test case, time averaging was done so that it has to be executed in two stages as described 
in Section 6. In the first stage, the flow is fully developed; while in the second stage, the time averaging 
is performed. For developing the flow field, we performed 10000-time steps. For time averaging the 
flow field, 10000-time steps are enough, in order to make the flow fully developed based on the current 
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time step. For time averaging, set the option in the control file “averaging” to 3, “rstart” to 0, and rename 
the result files from the last instantaneous time step (ufield010000.dat, v_field010000.dat, 
pfield010000.dat, nvfield010000.dat, and cs_010000.dat) to the value corresponding to time zero 
(ufield000000.dat, vfield000000.dat, ...). Also, when restarting the flow field for averaging, set 
“rstart_turbinerotation” as 1 and rename TurbineTorqueControl010001_000.dat as 
TurbineTorqueControl000001_000.dat. 

6.1.3 Results 

Figure 6. and Figure 6. shows the contour plots of the instantaneous streamwise velocity in two different 
planes. As can be seen, actuator disk simulation can visualize the area which turbulence dominates in 
the flow field with approximately good resolution; but not that much in detail in comparison with turbine 
resolving method. This method is the least computationally expensive method in comparison with 
turbine resolving and can be a good choice when the details of the vortical structures and turbulence is 
not that much important. 

 
Figure 6.3: Contours of instantaneous streamwise velocity on the X-Y plane at the hub height 

 
Figure 6.4: Contours of instantaneous streamwise velocity on the Z-X plane at the hub height 
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 An animation of the instantaneous streamwise velocity on the X_Y plane at the hub height can 
also be found at this link. 
 
 

 
Figure 6.5: Time-averaged streamwise velocity on the Z-X plane at the hub height 

 

Figure 6.6: Turbulent Kinetic Energy on the Z-X plane at the hub height 

6.2 Actuator line model for blades and actuator surface model for nacelle 

6.2.1 Case Definition 

This test case is for introducing and simulating the actuator line model for turbine parameterization. A 
computationally intensive approach for studying the fluid dynamics of wind and MHK farms is to solve 
numerically the full Navier-Stokes equations with turbines parameterized with actuator line models [8]. 
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In the actuator line approach, the turbine blade is represented by a rotating line with distributed forces, 
which are calculated from a blade element approach combined with tabulated 2D airfoil drag and lift 
coefficients [17]. The nacelle geometry is represented by the actual surface of the nacelle with distributed 
forces, as can be seen in the figure bellow. 

  
Figure 6.7: Schematic of the actuator line and nacelle used in the simulation  

An ASCII data file that contains the turbine model’s mesh with the name of “acldata000” should 
be in the simulation directory, along with the “Urefdata” which is a UCD formatted unstructured 
triangular mesh. A UCD formatted unstructured triangular mesh for the nacelle with the name of 
“nacelle000_” should also be in the simulation directory. The forces on each element are calculated 
based on the local inflow velocity and the drag and lift coefficients of the 2D airfoil. The rotor blades. 
cross section is approximated as a NACA0012 So, for airfoil data, we should have text files including 
“Aerodym000_00” for lift and drag coefficients and “FOIL000_00” for cord length of the airfoil. These 
text files should be inside the project directory.  

6.2.2 Main Case Parameters 

The main parameters in the control file for setting this case are listed in Table 6.3. The parameters related 
to the MHK turbine rotor and nacelle model will be also addressed. When using the rotor model, the 
control options for setting the case are located not only in control.dat but also in Turbine.inp and 
Nacelle.inp. The flow parameters are summarized in Table 6.3, with the rotor parameters in Table 6.4 
and nacelle parameters in Table 6.5. The parameters in Turbine.inp and Nacelle.inp that are not discussed 
in the Table 6.4 and Table 6.5 are not used in the simulation. 
 
Table 6.3 Parameters in control.dat file for the MHK turbine 

Parameter Option in control file Value 
Time step size dt [s] 0.001 
Activate the actuator disk model  rotor_modeled  6.0 
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Number of turbines turbine 1.0 
Reference length of the turbine reflength_wt 0.5 
Reference velocity of the case. It is only used for 
dimensionalizing the turbine model output files 

refvel_wt 1.0 

Distance upstream of the turbine in rotor diameters 
where the turbine incoming velocity or reference 
velocity is computed 

loc_refvel 1.0 

Shen tip loss correction model Shen_AL 1.0 
Type of smoothing delta function deltafunc 10 
Delta function width in cell units halfwidth_dfunc 4.0 
Activate the actuator surface model for nacelle nacelle_model 5.0 
Number of nacelles in the simulation NumberOfNacelle 1.0 
Number of nacelles in the same location NumNacellePerLoc 1.0 
Reference length of the nacelle reflength_nacelle 0.5 

 
Table 6.4 Parameters in Turbine.inp file for the MHK turbine 

Parameter Option in Turbine.inp file Value 
Number of blades in the rotor num_blade 3 
Number of foil types along the blade num_foiltype 1 
Normal direction of the turbine rotor plane. nx_tb, ny_tb, nz_tb 

or  
Yaw1, Yaw2, Yaw3 

1.0 0.0 0.0 

The turbine rotor initial translation. x_c, y_c, z_c 8.0 2.5 0.8 
Tip speed ratio Tipspeedratio -2.5 
Radius of the rotor corresponding to the 
acddata mesh 

r_rotor 0.5 

 
Table 6.5 Parameters in Nacelle.inp file for the MHK turbine 

Parameter Option in Turbine.inp file Value 
Normal direction of the turbine nacelle plane nx_tb, ny_tb, nz_tb 1.0 0.0 0.0 
The turbine nacelle initial translation x_c, y_c, z_c 8.0 2.5 0.8 
friction factor which is used in the nacelle model 
calculation 

frictionfactor 0.4 

Radius of the nacelle corresponding to the 
nacelle000_ mesh 

r_nacelle 0.0425 

length scale of the local background grid spacing dh 0.02 
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The upstream end x-coordinates of nacelle for 
friction factor calculation 
 

xnacelle_upstreamend 2.5 

The upstream end y-coordinates of nacelle for 
friction factor calculation 

ynacelle_upstreamend 0.0 

 
 For this test case, time averaging was done, so that it has to be executed in two stages as described 
in Section 6. In the first stage the flow is fully developed, while in the second stage the time averaging 
is performed. For developing the flow field, we performed 10000-time steps. For time averaging the 
flow field, 10000-time steps are enough, in order to make the flow fully developed based on the current 
time step. For time averaging, set the option in the control file “averaging” to 3, “rstart” to 0, and rename 
the result files from the last instantaneous time step (ufield010000.dat, v_field010000.dat, 
pfield010000.dat, nvfield010000.dat, and cs _010000.dat) to the value corresponding to time zero 
(ufield000000.dat, vfield000000.dat, ...). Also, when restarting the flow field for averaging, set 
“rstart_turbinerotation” as 1 and rename 010001_ 000.dat as TurbineTorqueControl000001_000.dat. 

6.2.3 Results 

Figure 6. and Figure 6. shows the contour plots of the instantaneous streamwise velocity in two different 
planes. As can be seen, actuator line simulation can visualize the vortical structures and turbulence in 
the flow field with a good resolution in comparison with turbine resolving method. Also, a wake region 
can be found in these contours which is due to the effect of nacelle. This method is not as computationally 
expensive as turbine resolving and can be a good choice in case of tidal farms. 

 
Figure 6.8: Contours of instantaneous streamwise velocity on the X-Y plane at the hub height 
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Figure 6.9: Contours of instantaneous streamwise velocity on the Z-X plane at the hub height 

 An animation of the instantaneous streamwise velocity on the X_Y plane at the hub height can 
also be found at this link. 
 

 
Figure 6.10: Time-averaged streamwise velocity on the Z-X plane at the hub height 
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Figure 6.11: Turbulent Kinetic Energy on the Z-X plane at the hub height 

 

6.3 Actuator surface model for both blades and nacelle 

6.3.1 Case Definition 

This test case is for introducing and simulating the actuator surface model for turbine parameterization. 
MHK turbine blades and nacelle were modeled using the actuator surface model. The actuator surface 
models the turbine blade by computing the lift and drag forces using the blade element theory [36]. The 
geometries represented by the actuator surface of the blades and nacelle can be seen in the figure below. 

 
 

Figure 6.12: Schematic of the actuator line and nacelle used in the simulation  
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An ASCII data file that contains the turbine model’s mesh with the name of “acldata000” should 
be in the simulation directory, along with the “Urefdata” which is a UCD formatted unstructured 
triangular mesh. A UCD formatted unstructured triangular mesh for the blades with the name of 
“acsdata000” and for the nacelle with the name of “nacelle000_” should also be in the simulation 
directory. The forces on each element are calculated based on the local inflow velocity and the drag and 
lift coefficients of the 2D airfoil. So, for airfoil data, we should have text files including 
“Aerodym000_00” for lift and drag coefficients and “FOIL000_00” for cord length of the airfoil. These 
text files should be inside the project directory.  

6.3.2 Main Case Parameters 

The main parameters in the control file for setting this case are listed in Table 6.6. The parameters related 
to the MHK turbine rotor and nacelle model will be also addressed. When using the rotor model, the 
control options for setting the case are located not only in control.dat but also in Turbine.inp and 
Nacelle.inp. The flow parameters are summarized in Table 6.6, with the rotor parameters in Table 6.7 
and nacelle parameters in Table 6.8. The parameters in Turbine.inp and Nacelle.inp that are not discussed 
in the Table 6.7 and Table 6.8 are not used in the simulation. 
 
Table 6.6 Parameters in control.dat file for the MHK turbine 

Parameter Option in control file Value 
Time step size dt [s] 0.001 
Activate the actuator disk model  rotor_modeled  5 
Number of turbines turbine 1 
Reference length of the turbine reflength_wt 0.5 
Reference velocity of the case. It is only used for 
dimensionalizing the turbine model output files 

refvel_wt 1.0 

Distance upstream of the turbine in rotor diameters 
where the turbine incoming velocity or reference 
velocity is computed 

loc_refvel 1.0 

Type of smoothing delta function deltafunc 10 
Delta function width in cell units halfwidth_dfunc 4.0 
Activate the actuator surface model for nacelle nacelle_model 5.0 
Number of nacelles in the simulation NumberOfNacelle 1.0 
Number of nacelles in the same location NumNacellePerLoc 1.0 
Reference length of the nacelle reflength_nacelle 0.5 

 
Table 6.7 Parameters in Turbine.inp file for the MHK turbine 

Parameter Option in Turbine.inp file Value 
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Number of blades in the rotor num_blade 3 
Number of foil types along the blade num_foiltype 1 
Normal direction of the turbine rotor plane. nx_tb, ny_tb, nz_tb 

or  
Yaw1, Yaw2, Yaw3 

1.0 0.0 0.0 

The turbine rotor initial translation. x_c, y_c, z_c 8.0 2.5 0.8 
Tip speed ratio Tipspeedratio -2.5 
Radius of the rotor corresponding to the 
acddata mesh 

r_rotor 0.5 

 
Table 6.8 Parameters in Nacelle.inp file for the MHK turbine 

Parameter Option in Turbine.inp file Value 
Normal direction of the turbine nacelle plane nx_tb, ny_tb, nz_tb 1.0 0.0 0.0 
The turbine nacelle initial translation x_c, y_c, z_c 8.0 2.5 0.8 
friction factor which is used in the nacelle model 
calculation 

frictionfactor 0.4 

Radius of the nacelle corresponding to the 
nacelle000_ mesh 

r_nacelle 0.0425 

length scale of the local background grid spacing dh 0.02 
The upstream end x-coordinates of nacelle for 
friction factor calculation 
 

xnacelle_upstreamend 2.5 

The upstream end y-coordinates of nacelle for 
friction factor calculation 

ynacelle_upstreamend 0.0 

 
 For this test case, time averaging was done, so that it has to be executed in two stages as described 
in Section 6. In the first stage the flow is fully developed, while in the second stage the time averaging 
is performed. For developing the flow field, we performed 10000-time steps. For time averaging the 
flow field, 10000-time steps are enough in order to have fully developed flow. For time averaging, set 
the option in the control file “averaging” to 3, “rstart” to 0, and rename the result files from the last 
instantaneous time step (ufield010000.dat, v_field010000.dat, pfield010000.dat, nvfield010000.dat, and 
cs_010000.dat) to the value corresponding to time zero (ufield000000.dat, vfield000000.dat, ...). Also, 
when restarting the flow field for averaging, set “rstart_turbinerotation” as 1 and rename 
TurbineTorqueControl010001_000.dat as TurbineTorqueControl000001_000.dat. 

6.3.3 Results 

Figure 6.13 and Figure 6.14 shows the contour plots of the instantaneous streamwise velocity in two 
different planes. As can be seen, actuator surface simulation can visualize the vortical structures and 
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turbulence in the flow field with a good resolution in comparison with the turbine resolving method. 
Also, a wake region can be found in these contours which is due to the effect of nacelle. This method is 
not as computationally expensive as turbine resolving and can be a good choice in case of tidal farms. 

 
Figure 6.13: Contours of instantaneous streamwise velocity on the Y-X plane at the hub height 

 
Figure 6.14: Contours of instantaneous streamwise velocity on the Z-X plane at the hub height 
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Figure 6.15: Time-averaged streamwise velocity on the Z-X plane at the hub height 

 
Figure 6.16: Turbulent Kinetic Energy on the Z-X plane at the hub height 

6.4 Turbine resolving simulations with IB nacelle 

6.4.1 Case Definition 

This test case is for introducing and simulating the coupled FSI algorithm for simulating the flow past 
real-life MHK turbines consisting of the moving rotor and stationary nacelle, pylon and foundation. To 
resolve flow-blade interactions directly, we used a turbine-resolving approach. In the turbine-resolving 
approach, flow around MKH turbine blades is directly resolved in numerical simulation by employing 
the grid that is sufficiently fine enough to resolve them. The turbine-resolving approach would be more 
appropriate for studying the detailed flow physics around individual turbines. Furthermore, flows past 
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MHK turbines in natural or man-made waterways occur at high Reynolds numbers (106 to 107 based on 
the mean flow depth and velocity) and are dominated by energetic coherent structures induced by the 
interaction of moving and stationary turbine components with the complex waterway bathymetry and 
the approaching turbulent flow. Therefore, one must employ turbulence closure models that can to 
capture highly 3D and dynamic flow environment and resolve turbulent flows dominated by energetic 
coherent structures [31]. 
 In the turbine resolving approach, the complete MHK turbine geometry, including the rotor and 
all stationary parts, is treated as a sharp interface immersed boundary and embedded in a background 
curvilinear grid discretizing the channel or natural waterway. The nacelle geometry is represented by the 
actual surface of the nacelle with distributed forces, as can be seen in the figure below.  
 

  
Figure 6.17: Schematic of the tower and nacelle as IBs used in the turbine resolving simulation 

 A text file that contains the needed parameters for the FSI simulation with the name of “fsi-
rot.dat” should be also in the simulation directory. In this simulation, we have 3 IBs including the channel 
bed and the turbine’s blade, tower, and nacelle. For the channel bed all the parameters are zero, so we 
will not talk about them. The rest can be found in Table 6.10. The bottom wall cannot be resolved with 
the current grid resolution and is treated with a wall model. 

6.4.2 Main Case Parameters 

The main parameters in the control file for setting this case are listed in Table 6.9. When using the rotate 
FSI, the control options for setting the case are located not only in control.dat but also in fsi-rot.dat. The 
flow and FSI parameters are summarized in Table 6.9, with the rotate FSI parameters in Table 6.10. The 
parameters in control.dat that are not discussed in Table 6.9 are not used in the simulation. 
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Table 6.9 Parameters in control.dat file for the MHK turbine 

Parameter Option in control file Value 
Time step size dt [s] 0.0005 
Move the structure in a single translational DoF fsi 0 
Move the structure in a single rotational DoF rfsi 1 
restarting a simulation when using FSI rstart_fsi 0 
Use loose coupling in FSI simulation str 0 
Reduced velocity red_vel 0.8975 
Reduced mass mu_s 0.25 

 
Table 6.10 Parameters in fsi-rot.dat file for the MHK turbine 

Parameter Option in fsi-rot.dat file Value for IB2 Value for IB3 
Number of IB IBNum 1 2 
axis of rotation Rot_Dir 0 0 
Angle of rotor XYAngle 0 0 
angular velocity Ang_V 1 0 
center of rotation x_r, y_r, z_r 0.036, 0, 0.8 0, 0, 0.8 
Center of Mass for 
translating the IBs 

CMx_c, CMy_c, CMz_c 6.964 2.5 0 6.964 2.5 0 

  

6.4.3 Results 

Figure 6.18 and Figure 6.19 show the contour plots of the instantaneous streamwise velocity in two 
different planes. As can be seen, turbine resolving simulation can visualize the vortical structures and 
turbulence in the flow field with a high resolution. Also, a wake region can be found in these contours. 
Although this method is computationally expensive, it has a high accuracy in capturing most of the 
eddies in the LES simulation. 
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Figure 6.18: Contours of instantaneous streamwise velocity on the X_Y plane at the hub height 

 
Figure 6.19: Contours of instantaneous streamwise velocity on the Z-X plane at the hub height 

 An animation of the instantaneous streamwise velocity on the X_Y plane at the hub height can 
also be found at this link. 
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Figure 6.20: Time-averaged streamwise velocity on the Z-X plane at the hub height 

 
Figure 6.21: Turbulent Kinetic Energy on the Z-X plane at the hub height 

 

6.5 Turbine Resolving Simulations with IB Nacelle Integrating Solitary Wave 

6.5.1 Case Definition 

This test case is for introducing and simulating the coupled FSI algorithm for simulating the wave and 
the flow past real-life MHK turbines consisting of the moving rotor and stationary nacelle, pylon and 
foundation. To directly resolve wave and flow-blade interactions, we employed a turbine-resolving case 
with the solitary wave designation. It is performed integrating the solitary wave designation into the 
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domain which resolves flow-blade interactions with a turbine-resolving approach. We used solitary wave 
herein to predict the impacts of waves on infrastructures. 

In the turbine-resolving approach, flow around MHK turbine blades is directly resolved in 
numerical simulation by employing the grid that is sufficiently fine enough to resolve them. The turbine-
resolving approach would be more appropriate for studying the detailed flow physics around individual 
turbines. Furthermore, flows past MHK turbines in natural or manmade waterways occur at high 
Reynolds numbers (106 to 107 based on the mean flow depth and velocity) and are dominated by 
energetic coherent structures induced by the interaction of moving and stationary turbine components 
with the complex waterway bathymetry and the approaching turbulent flow. Therefore, turbulence 
closure models that are able to capture such highly 3D and dynamic flow environment and resolve 
turbulent flows dominated by energetic coherent structures need to be employed [29]. 
 In the turbine resolving approach, the complete MHK turbine geometry, including the rotor and 
all stationary parts, is treated as a sharp interface immersed boundary and embedded in a background 
curvilinear grid discretizing the channel or natural waterway. The nacelle geometry is represented by the 
actual surface of the nacelle with distributed forces, as can be seen in the figure below.  
 

  

Figure 6. 22: Schematic of the tower and nacelle as IBs used in the turbine resolving simulation 

 A text file that contains the needed parameters for the FSI simulation with the name of “fsi-rot.dat” 
should be also in the simulation directory. In this simulation, we have 3 IBs, including channel bed, 
turbine’s blade, and tower and nacelle. For the channel bed, all the parameters are zero except ‘Rot_Dir’ 
parameter which should be defined as 2. The rest can be found in Table 6.12. The bottom wall cannot be 
resolved with the current grid resolution and is treated with a wall model. 

6.5.2 Main Case Parameters 
The main parameters in the control file for setting this case are listed in Table 6.11 & 6.12. Parameters 
required for levelset method and wave characteristics are tabulated in Table 6.12. When using the rotate 
FSI, the control options for setting the case are located not only in control.dat but also in fsi-rot.dat. The 
flow and FSI parameters are summarized in Table 6.11, with the rotating FSI parameters in Table 6.13. 
The parameters in control.dat that are not discussed in Table 6.11 and 6.12 are not used in the simulation. 
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Table 6. 11: Parameters for the level-set method and wave characteristics in control.dat file for the 
MHK turbine 

Parameter Option in control file Value 
Activates the levelset method levelset 1 
Density of the water in 𝑘𝑔 𝑚:⁄  rho0 1000 
Density of the air in 𝑘𝑔 𝑚:⁄  rho1 1.2 
Dynamic viscosity of water in 𝑁𝑠 𝑚%⁄  mu0 1.e-3 
Dynamic viscosity of air in 𝑁𝑠 𝑚%⁄  mu1 1.8e-5 
The thickness of the air/water interface  dthick 0.02 
These parameters will keep constant the free surface 
elevation at the corresponding boundary. 

inlet_y, outlet_y 0.78 

Number of times to solve the reinitialization equation 
for mass conservation. 

level_it 30 

Defines the pseudo-time step size used in the 
reinitialization equation. 

levelset_tau 0.033 

Activates the solitary wave solitary_wave 1 
It sets the wave amplitude solitary_wave_amplitude 0.1 
Allows to define the source of wave in streamwise 
direction 

inlet_z_for_solitary_wave 0.0 

Time when the wave is introduced into the domain ti_start_solitary_wave 0.0 
 

Table 6. 12: Parameters in control.dat file for the MHK turbine 

Parameter Option in control file Value 
Time step size dt [s] 0.001 
Move the structure in a single translational DoF fsi 0 
Move the structure in a single rotational DoF rfsi 1 
restarting a simulation when using FSI rstart_fsi 0 
Use loose coupling in FSI simulation str 0 
Reduced velocity red_vel 0.8975 
Reduced mass mu_s 0.25 

 

Table 6. 13: Parameters in fsi-rot.dat file for the MHK turbine 

Parameter Option in fsi-rot.dat file Value for IB2 Value for IB3 
Number of IB IBNum 1 2 
axis of rotation Rot_Dir 2 2 
Angle of rotor XYAngle 0 0 
angular velocity Ang_V -1 0 
center of rotation x_r, y_r, z_r 0.036, 0, 0.8 0, 0, 0.764 
Center of Mass for 
translating the IBs 

CMx_c, CMy_c, CMz_c 2.5 0 8.964 2.5 0 8.964 
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6.5.3 Results 
Figure 6.23 and Figure 6.24 show the contour plots of the instantaneous streamwise velocity in two 
different planes. As can be seen in Figure 6.23, turbine resolving simulation can visualize the vortical 
structures and turbulence in the flow field with a high resolution. Also, a wake region can be found in 
these contours. Although this method is computationally expensive, it has a high accuracy in capturing 
most of the eddies in the LES simulation.  
 

 
Figure 6. 23: Contours of instantaneous streamwise velocity on the X_Y plane at the hub height 
Besides, in Figure 6.24, the effect of the wave is observed with the red line which demonstrates the free 
surface with the solitary wave effects.  

 
Figure 6. 24: Contours of instantaneous streamwise velocity on the Z-X plane at the hub height 

 An animation of the instantaneous streamwise velocity on the X_Y plane at the hub height can 
also be found at this link. 
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