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Abstract—To analyze marine animals’ behavior, seasonal dis-
tribution, and abundance, digital imagery can be acquired by a
camera or a Lidar. Depending on the quantity and properties of
acquired imagery, the animals are characterized as either features
(shape, color, texture, etc.) or dissimilarity matrices derived from
different shape analysis methods (shape context, internal distance
shape context, etc.). For both cases, multiview learning is critical
in integrating more than one set of feature/dissimilarity matrix
for higher classification accuracy. This paper adopts correntropy
loss as the cost function in multiview learning, which has favorable
statistical properties for rejecting noise. For the case of features,
the correntropy-loss-based multiview learning and its “entrywise”
variation are developed based on the multiview intact space learn-
ing algorithm. For the case of dissimilarity matrices, the robust
Euclidean embedding algorithm is extended to its multiview form
with the correntropy loss function. Results from simulated data
and real-world marine animal imagery show that the proposed
algorithms can effectively enhance classification rate as well as
suppress noise under different noise conditions.

Index Terms—Correntropy loss, dissimilarity matrix, marine
animal Lidar imagery, multiview learning.

I. INTRODUCTION

THE study of marine animals’ behavior, seasonal distri-
bution, and abundance is vital for various environmental

agencies, commercial fishermen, and marine research institutes.
To this end, extensive amount of digital imagery and video are
acquired using imaging sensors mounted on autonomous under-
water vehicles, remotely operated vehicles, remotely operated
towed vehicles, and fixed installations. Color images are more
intuitive to humans compared to sonar signal, yet manual label-
ing of images is still a daunting task considering the sheer size
of the data. An automated solution is thus preferred. While the
automated solution consists of two major steps—detection and
classification—this paper will focus on the latter problem only.
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There are a good number of works concentrating on feature
extraction for colored marine imagery. Shape (Fourier descrip-
tors), color (normalized color histograms), and texture (Gabor
filters and gray-level co-occurrence) [1] are among the most
exploited features. Biological characteristics, such as body part
ratio [1] and morphological measurements [2], can distinguish
different species as well. Today, the rapid development of con-
volutional neural networks (CNNs) has opened new possibility
for accurate image representation, which has since benefited
marine animal classification. To acquire CNN features of an
image, one can either input the image to a CNN pretrained by
a large database (e.g., ImageNet [3]), which consists of images
that are visually similar to the target image [4], or train a new
CNN with images homogeneous to the target, as in the example
of plankton classification [5].

Recently, the Harbor Branch Oceanographic Institute (HBOI)
at the Florida Atlantic University, Fort Pierce, FL, USA, has de-
veloped a novel system called unobtrusive multistatic serial Li-
dar imager (UMSLI) to perform marine hydrokinetic site moni-
toring and marine animal classification [6], [7]. Initial testing of
the UMSLI system has been conducted inside a unique optical
test facility at HBOI, which is capable of extensive testing of a
variety of electrooptical system configurations under a range of
environmental conditions. Compared with optical camera imag-
ing, underwater Lidar imaging has several advantages. First, red
laser illuminators are beyond the visible wavelength range of
marine life; thus, animals being monitored will not be affected
[8]. On the other hand, the optical camera requires a significant
amount of white light to illuminate low-light areas and is more
obtrusive to marine life. Second, unlike conventional camera
whose focus is governed by the lens, Lidar imagery will remain
in focus throughout the entire range, which gives it superior
detection range. Higher signal-to-noise ratio is also achieved
with Lidar due to the higher photon efficiency [9]. Third, the
transmitter in the UMSLI system can operate in an adaptive
mode, opting for either higher resolution or longer range of de-
tection. A Lidar image of a fish captured by UMSLI is typically
2-D grayscale integrated from the 3-D point cloud Lidar return.
Fig. 1 shows examples of Lidar images retrieved from the test
tank at HBOI. However, using Lidar imagery for marine animal
classification is not without its own issues. As UMSLI is the first
attempt to identify an individual marine animal using Lidar im-
agery, there is virtually no existing database online with similar
content. Given that the amount of data obtained from initial UM-
SLI deployment is also small, training a proper CNN becomes
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Fig. 1. Lidar image examples. Left image and right image are retrieved under clear water (attenuation coefficient c = 0.33) and turbid water (Ic = 0.73)
conditions, respectively.

problematic with insufficient data. Also, most of the valuable
information revealed from the obtained Lidar imagery in the ini-
tial experimental data set seems to be the shape of the animal.
Using the pixels directly as the feature is not recommended be-
cause of orientation variations among shapes, while traditional
shape features, such as Zernike [10] or Hu’s moments, have rel-
atively weak description ability. There has been an attempt [11]
to apply bag of words for quantifying a shape’s feature, but the
resulting shape vocabulary feature will be very long and highly
redundant because the common space in which all shapes reside
can have very high dimensions. Instead of feature extraction,
most of the existing shape classification or recognition literature
adopt a pairwise comparison strategy, creating a matrix directly
with each entry representing the similarity/dissimilarity between
a pair of shapes. As such, a “descriptor” rather than a “feature”
will be enough to represent a shape, which is usually much sim-
pler and intuitive. Commonly used descriptors include shape
context (SC) [12], internal distance shape context (IDSC) [13],
the triangle descriptor [14], and height functions [15]. With a
proper dissimilarity measure (Chi square or earthmover distance
[16]) applied on pairs of descriptors, these methods can usually
achieve satisfying classification results using a k-nearest neigh-
bor classifier, especially on data with very few training samples.
This similarity-matrix-based approach is not limited to shape
descriptors only. For instance, Gaussian mixture models [17],
[18] have been applied in hand gesture recognition, while the
spectral estimation [19] method has been used in an automobile
recognition task.

For both feature-based and dissimilarity-matrix-based ma-
rine animal classification, utilizing information from multiple
sources (different features/descriptors or different view angles)
will lead to more robust description of objects, and thus im-
prove classification accuracy [4], [7]. Multiview learning [20]
is a group of methods that introduces one function to model one
particular view of the data, then jointly optimizes all the func-
tions to improve the learning performance. The goal of this pa-
per is to develop suitable multiview learning algorithms for both

data formats, where a “view” can be a feature set or a dissimilar-
ity matrix. There are two major considerations when designing
a multiview learning algorithm. First, the algorithm should si-
multaneously accommodate dimensional reduction because it is
a necessary preprocessing step that makes classification faster,
and also more accurate when the data are small or have a low-
dimensional structure [21], [22]. CNN features usually are high
dimensional (4096 for DeCAF [23]) and have considerable re-
dundancy [24], thus it is natural to apply dimensionality reduc-
tion. With this principle in mind, one can choose the desired mul-
tiview learning framework from various options. For features,
the most notable categories of multiview learning algorithms
are cotraining [25], multiple kernel learning (MKL) [26], and
subspace learning [20]. Only subspace learning involves dimen-
sionality reduction. Examples include multiple spectral embed-
ding [27], multiview nonnegative matrix factorization [28], and
multiview intact space learning (MISL) [29]. For dissimilarity
matrices, there are very few well-established multiview learning
algorithms. It should be noted that MKL cannot be applied to
dissimilarity matrices as they are not guaranteed to be positive
semidefinite and, hence, are not valid kernel matrices. Cotrans-
duction [30] borrows ideas from cotraining and can be viewed
as a multiview approach, yet it lacks a dimensionality reduction
mechanism. It may be a good idea to first find a base method that
performs dimensionality reduction for a single dissimilarity ma-
trix, then extend it to its multiview version. Potential candidates
include principal component analysis (PCA), multidimensional
scaling (MDS), manifold learning [31], and autoencoder [32].
Before carrying out any of these algorithms, it is necessary to
enforce the dissimilarity matrix to be a proper distance matrix.
The robust Euclidean embedding (REE) [33] is an algorithm
based on the classical MDS, which also regulates the dissimi-
larity matrix by enforcing the Euclidean distance. Meanwhile,
there is actually one algorithm in the literature with the name
multiview MDS (MV-MDS) [34], but it is based on nonclas-
sical MDS and is compatible only with the L2 cost function,
unlike REE.
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Another important consideration in designing multiview
learning algorithms is the choice of cost functions, which has not
been studied in detail in previous works. In a data set, the views
given may contain irregularities (noise) of different types and
magnitudes. The mean square error is the most widely used cost
function, yet its performance is suboptimal for non-Gaussian
noise. The correntropy [35] as a nonlinear, local similarity mea-
sure that is robust to outliers has attracted researchers in recent
years. Notable applications of correntropy include adaptive fil-
tering [36], classification [37], face recognition [38], [39], and
robust autoencoder [40]. More recently, the generalized cor-
rentropy [41] is proposed and successfully applied to adaptive
filtering. It is more versatile than correntropy, as changes in the
shape parameter can lead to the suppression of different types
of noise.

In this paper, correntropy-loss-based multiview (C-MV)
learning algorithms will be developed for both features and
dissimilarity matrices. For features, the MISL [29] is employed
as the base method for two related C-MV learning algorithms.
For dissimilarity matrices, the base method will be REE. As
REE is itself single view only, its direct multiview version
will be proposed along with a correntropy-based method. For
the rest of this paper, the MISL and REE algorithms, as well
as the concept of generalized correntropy, will be reviewed
first, followed by the derivation of correntropy-loss-based mul-
tiview (C-MV) learning algorithms. Experimental results for
both simulated data and real-world marine animal data are
presented.

II. BACKGROUND

This section gives a review of two existing algorithms, MISL
and REE, as well as the concept of generalized correntropy.

A. MISL Algorithm

The MISL [29] algorithm aims at learning a low-dimensional
latent intact subspace from two or more different views. One
advantage of MISL is that it does not need the assumption that
each view needs to be sufficient; as long as enough views are
given, the learned view will be “intact,” or fully able to describe
the object. MISL uses the Cauchy loss

Jcauchy(e) = log
(

1 +
e2

c2

)
(1)

to minimize the reconstruction error over the latent intact space

min
x,W

1
MN

M∑
v=1

N∑
i=1

log

(
1 +

‖z(v )
i − W(v )xi‖2

2

c2

)

+ C1

m∑
v=1

‖W(v )‖2
F + C2

n∑
i=1

‖xi‖2
2 . (2)

In (1), e refers to an error and c is a user-defined shape parameter.
In (2), vectors z(v )

i and xi stand for, respectively, the d(v ) ∗ 1
feature vector from the vth view and the d ∗ 1 common view
feature vector to be learned at the ith instance (a single image

in the context of image classification), while W(v ) is the vth
transformation matrix with dimensions d(v ) ∗ d. There are M
views and N instances in total. The iteratively reweight residuals
technique is used to find a solution for (2).

B. REE Algorithm

The classical multidimensional scaling (cMDS) [42] seeks to
find the low-dimensional data representation X, whose asso-
ciated squared Euclidean distance matrix D approximates the
given dissimilarity matrix Δ, whose (i, j)th entry denotes the
dissimilarity between the ith and jth instances. Both D and Δ
are N by N (N is the data size), while X is N by k (k < N )
(the ith row of X represents the ith instance). The cMDS is pro-
cessed in two stages. First, the dissimilarity matrix is embedded
to the Euclidean distance space, which solves the following
optimization problem:

min
D

||HΔH − HDH||22 (3)

where H = I − (1/N)11T is the centering matrix. Second, di-
mensionality of X is reduced through PCA.

The REE [33] algorithm states that the robustness of the
Euclidean embedding process can be enhanced by two practices:
First, replacing the L2 norm with L1 norm in the optimization
function; and second, rather than projecting the matrix B =
−(1/2)HΔH to the positive semidefinite cone, REE takes a
direct approach by projecting Δ onto the Euclidean distance
matrix. Therefore, REE seeks to solve the optimization problem

min
D

Wij |Δij − Dij |. (4)

The weighting matrix W is usually set to all ones. The Gram
matrix B associated with D should still meet the condition of
being positive semidefinite. Since D and B are related by

Dij = Bii + Bjj − Bij − Bji (5)

(4) can be optimized by taking subgradient with respect to B,
and constrain B to be positive semidefinite at every iteration.

C. Generalized Correntropy Loss (GC-Loss) Function

The generalized correntropy [41] is a similarity measure be-
tween two random variables X and Y

V (X,Y ) = E[Gα,β (X − Y )]. (6)

In (6), Gα,β (·) is called the generalized Gaussian density (GGD)
function

Gα,β (e) =
α

2βΓ( 1
α )

exp
(
−| e

β
|α
)

= γα,β exp (−λ|e|α ) (7)

where α > 0 is the shape parameter, β > 0 is the band-
width parameter, λ = 1/βα is the kernel parameter, and
γα,β = (α/(2βΓ(1/α))) is the normalizing constant [41].
When α = 2, the GGD becomes a Gaussian kernel κ(e) =
(
√

λ/
√

π) exp (−λe2) = (1/(σ
√

2π)) exp (−(e2/2σ2)),
which turns V (X,Y ) into correntropy—a well-known specific
case of generalized correntropy. The generalized correntropy
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Fig. 2. Comparison of different loss functions. The normalizing constant γ is
ignored for GC-loss.

has the advantages of being smooth, positive, and bounded.
It also involves higher order absolute moments of the error
variable, which makes it more noise resistant compared to the
L2 cost function that uses only the second-order moment [35]

V (X,Y ) = γα,β

∞∑
n=0

(−λ)n

n!
E [|X − Y |αn ] . (8)

In classification tasks, a loss function based on correntropy
called correntropy loss is used [43]. The GC-loss as a func-
tion of error takes the following form:

JGC−loss(e) = Gα,β (0) − Gα,β (e)

= γα,β (1 − exp (−λ|e|α )) . (9)

Fig. 2 shows several loss functions. Clearly, neither L1 nor
Cauchy loss is bounded, unlike GC-loss. In fact, Cauchy loss
would resemble GC-loss with α = 2 (correntropy loss) when
error e is small, according to their Taylor expansion

log
(

1 +
e2

c2

)
=

e2

c2 − e4

2c4 +
e6

3c6 · · ·

1 − exp (−λ|e|2) = λe2 − λ2e4

2!
+

λ3e6

3!
· · · .

Given that λ = 1/c2 , the first two dominant terms are the same
for both loss functions. However, Cauchy will suffer from its
unboundedness when e is large. GC-loss has the interesting
property of behaving like different norms for different val-
ues of e [41]. When e is very small, GC-loss acts like Lα
norm. As e increases, GC-loss moves gradually toward L 0
norm. Therefore, different choices for the shape parameter α
are beneficial for different types of noise. Smaller α is better
when the distribution of noise is heavy-tailed (e.g., Laplace,

α stable), while larger α is better for light-tailed noise (e.g.,
uniform, binary).

III. C-MV LEARNING ALGORITHM

A. Algorithm for Features

According to previous analysis, the cost function for C-MV
learning can be written as follows:

min
x,W

R1(x,W)

=
1

MN

M∑
v=1

N∑
i=1

γσ

[
1 − κσ

(
||z(v )

i − W(v )xi ||2
)]

+ C10

m∑
v=1

||W(v ) ||2F + C20

n∑
i=1

||xi ||22 (10)

where κσ is a Gaussian kernel. Expression (10) can be rewritten
in the more compact form as

max
x,W

R2(x,W) =
M∑

v=1

N∑
i=1

exp

(
−||z(v )

i − W(v )xi ||22
2σ2

)

− C1

m∑
v=1

||W(v ) ||2F − C2

n∑
i=1

||xi ||22 . (11)

In (11), variables z(v )
i , xi , and W(v ) and parameters d(v ) , C1 ,

and C2 have the same connotation as in (2). The main goal is
still to solve for the common view xi . Kernel size σ is usually
set equal to or smaller than 1, provided that z(v ) is normalized

z(v ) :=
z(v )

∑N
i ||z(v )

i ||22/N
.

Regularization is used to penalize the terms x and W. The
parameters C1 and C2 can be chosen using cross validation.

To solve (11) with half-quadratic (HQ) optimization, a convex
function is defined as g(a) = −a ln(a) + a, where a < 0. The
conjugate function g∗(b) of g(a) is then [44]

g∗(b) = sup
a<0

(ba − g(a)) = exp (−b). (12)

In (12), the supremum is achieved when a = exp (−b) < 0.
Define

b
(v )
i = +

||zv
i − Wvxi ||22

2σ2 .

It follows that

g∗
( ||zv

i − Wvxi ||22
2σ2

)

= sup
a

( v )
i <0

{ ||zv
i − Wvxi ||22

2σ2 a
(v )
i − g(a(v )

i )
}

= exp
(
−||zv

i − Wvxi ||22
2σ2

)
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where

a
(v )
i = − exp

(
−||zv

i − Wvxi ||22
2σ2

)
< 0.

Therefore,

R2(x,W) =
M∑

v=1

N∑
i=1

sup
av

i <0

{ ||zv
i − Wvxi ||22

2σ2 av
i − g(av

i )
}

− C1

M∑
v=1

||Wv ||2F − C2

N∑
i=1

||xi ||22

= sup
A≺0

{
M∑

v=1

N∑
i=1

[ ||zv
i − Wvxi ||22

2σ2 av
i − g(av

i )
]

−C1

M∑
v=1

||Wv ||2F − C2

N∑
i=1

||xi ||22
}

.

(13)

With (13), (11) is equivalent to

max
x,W ,A≺0

R3(x,W,A)

=
M∑

v=1

N∑
i=1

[ ||zv
i − Wvxi ||22

2σ2 av
i − g(av

i )
]

− C1

M∑
v=1

||Wv ||2F − C2

N∑
i=1

||xi ||22 (14)

where A(v ,i) = a
(v )
i < 0. A double-loop alternating optimiza-

tion scheme can be applied to optimize (14). In the outer loop,
the alternating optimization is between A and {x, W}. Given xi

and W(v ) for all i and v, (14) becomes equivalent to

max
A

M∑
v=1

N∑
i=1

[ ||zv
i − Wvxi ||22

2σ2 av
i − g(av

i )
]

(15)

whose analytical solution is

a
(v )
i = − exp

(
−||z(v )

i − W(v )xi ||22
2σ2

)
. (16)

When a
(v )
i is given, (14) is equivalent to

max
x,W

M∑
v=1

N∑
i=1

a
(v )
i

2σ2 ||z
(v )
i − W(v )xi ||22

− C1

M∑
v=1

||W(v ) ||2F − C2

N∑
i=1

||xi ||22

⇒ min
x,W

M∑
v=1

N∑
i=1

(−a
(v )
i )||z(v )

i − W(v )xi ||22

+ C1

M∑
v=1

||W(v ) ||2F + C2

N∑
i=1

||xi ||22 . (17)

In the latter equation C1 := C1 ∗ 2σ2 , C2 := C2 ∗ 2σ2 . In the
inner loop, the alternating optimization is between W and x.

Given W(v ) , (17) becomes N independent problems

min
x i

M∑
v=1

(−a
(v )
i

)||z(v )
i − W(v )xi ||22 + C2 ||xi ||22 . (18)

For (18), taking the derivative with respect to xi and equating it
to zero, one will get

xi =

(
M∑

v=1

av
i W

T
v W(v ) − C2I

)−1 ( M∑
v=1

a
(v )
i WT

(v )z
(v )
i

)
.

(19)
When xi is given, (17) becomes M independent problems

min
W ( v )

N∑
i=1

(
−a

(v )
i

)
||z(v )

i − W(v )xi ||22 + C1 ||W(v ) ||2F . (20)

Let the derivative with respect to W(v ) equal zero and solve for
W(v ) , one will get

W(v ) =

(
N∑

i=1

a
(v )
i z(v )

i xT
i

)(
N∑

i=1

a
(v )
i xixT

i − C1I

)−1

. (21)

Alternatively to C-MV, this paper will propose another mul-
tiview learning algorithm for features called correntropy-loss
entrywise multiview (Ce-MV) learning for features to mitigate
some of the deficiencies of (11). Its optimization goal is

max
x,W

M∑
v=1

1
d(v )

N∑
i=1

d( v )∑
j=1

exp

(
− (z(v )

ij − W(v )
j xi)2

2σ2

)

− C1

m∑
v=1

d( v )∑
j=1

||W(v )
j ||2F − C2

n∑
i=1

||xi ||22 . (22)

Notations of variables and parameters in (22) are the same as in
(11). The coefficient (1/d(v )) ensures that features with higher
dimensions are given the same weight as lower dimensional
feature set. The main difference between (22) and (11) is that
Ce-MV maximizes the overall correntropy over every individual
entry zij of the input feature, not just every feature vector zi .
The potential advantage is that when certain entries of zi have
abnormal values caused by noise or low-quality features, the
whole zi will be affected as a result of the L2 norm used inside
the correntropy function in (11). On the other hand, abnormal
values in zi will restrict its effect to itself only as in (22), making
the good features contribute more effectively. A good choice for
kernel size σ for Ce-MV should be much smaller than that for
C-MV, preferably rescaled to 1/

√
d(v ) of the original.

The optimization for Ce-MV can be done by following the
same HQ and the alternating optimization technique. Expression
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(22) is equivalent to

⇒ max
x,W ,A

sup
A≺0

⎧⎨
⎩

M∑
v=1

1
dv

N∑
i=1

d( v )∑
j=1

×
[

(z(v )
ij − W(v )

j xi)2

2σ2
(v )

a
(v )
ij − g(av

ij )

]

−C1

m∑
v=1

d( v )∑
j=1

||W(v )
j ||2F − C2

n∑
i=1

||xi ||22

⎫⎬
⎭ .

(23)

Solution for a
(v )
ij in the outer loop of alternating optimization is

a
(v )
ij = −exp

(
− (z(v )

ij − W(v )
j xi)2

2σ2
(v )

)
. (24)

In the inner loop, solutions for xi and W(v )
j are

xi =

⎛
⎝ M∑

v=1

1
dv

d( v )∑
j=1

a
(v )
ij

(
W(v )

j

)T

W(v )
j − C2I

⎞
⎠

−1

×
⎛
⎝ M∑

v=1

1
dv

d( v )∑
j=1

a
(v )
ij z

(v )
ij )
(
W(v )

j

)T

⎞
⎠ (25)

W(v )
j =

(
N∑

i=1

a
(v )
ij z

(v )
ij xT

i

)(
N∑

i=1

a
(v )
ij xixT

i − C1I

)−1

.

(26)

Note that the intermediate variables a
(v )
i for C-MV and a

(v )
ij

for Ce-MV are reflective of the importance of an instance zi

when the algorithm converges. Additionally, a
(v )
ij can reveal

the importance of particular features within the instance, which
cannot be said for a

(v )
i .

Convergence analysis: It can be proved that for C-MV, the
sequence R3(xk ,Wk ,Ak )(k = 1, 2, . . . stands for the number
of outer iteration) in (14) converges: From (11), (13), and (14), it
is clear that R3(x,W,A) ≤ R2(x,W) ≤ MN , which means
R3(x,W,A) is upper bounded. Then, from (15) and (17), it can
be concluded that R3(xk ,Wk ,Ak ) ≤ R3(xk ,Wk ,Ak+1) ≤
R3(xk+1 ,Wk+1 ,Ak+1), i.e., R3(xk ,Wk ,Ak ) is nondecreas-
ing. Therefore, the sequence R3(xk ,Wk ,Ak )(k = 1, 2, . . .)
converges. By the same token, convergence of Ce-MV can be
proven as well.

The C-MV and Ce-MV algorithms are summarized in
Algorithm 1. The disadvantage of Ce-MV is that it is much
slower, especially when the dimensions of original features d(v )

are high, because computing d(v ) values of a
(v )
ij and W(v )

j are

more time consuming than computing a single value of a
(v )
i and

W(v ).

Algorithm 1: Algorithm for C-MV/Ce-MV.

Input: z(v )

Initialization: W(v ) , x, σ, C1 , C2
1: for k = 1 to maximum outer iteration do
2: update a

(v )
i as in (16)/ a

(v )
ij as in (24) for all subscripts

3: for ki = 1 to maximum inner iteration do
4: update xi as in (19)/(25) for all i

5: update W(v ) as in (21)/ W(v )
j as in (26) for all

subscripts
6: end for
7: end for
8: return x

B. Algorithm for Dissimilarity Matrices

First, the REE algorithm can be naturally extended to its
own multiview learning version, which will be called multi-
view REE (MV-REE) in this paper. Suppose the multiple views
consist of M N ∗ N real-valued squared dissimilarity matrices
Δ(1) , . . . ,Δ(M ) , with (Δ(v ))T = Δ(v ) and diag(Δ(v )) = 0.
Meanwhile, a common view for all M views is the squared Eu-
clidean distance matrix D. A cost function can be written in a
similar manner to (4), aiming at the minimization of the overall
L1 distance between all views and the common view

min
B

f0 , f0 = min
M∑

v=1

∑
ij

W
(v )
ij |Δ(v )

ij − Dij |. (27)

One can optimize (27) with the same subgradient approach. A
subgradient for f0 with respect to the Gram matrix B is

[
g0(B)

]
ij

=

{
−∑M

v=1 W
(v )
ij sign(Dij − Δ(v )

ij ), i 	= j∑M
v=1
∑N

k=1 W
(v )
ik sign(Dik − Δ(v )

ik ), i = j
(28)

where B is associated with D as in (5).
The proposed correntropy-loss-based multiview robust Eu-

clidean embedding (C-MV-REE) replaces the L1 cost function
in (4) with the correntropy loss

max
B

f, f =
M∑

v=1

∑
ij

W
(v )
ij exp

(
− (Δ(v )

ij − Dij )2

2σ2

)
. (29)

Kernel size σ can be set equal to or smaller than the median
values of the dissimilarity matrices. The goal is to optimize (29)
with respect to B. Unlike REE, which has a nondifferentiable
cost function, expression (29) is differentiable and a gradient
ascent optimization approach can be thus adopted. According
to matrix calculus, the derivative of f with respect to B is

∂f

∂Bij
= trace

(
∂f

∂D
∂D
∂Bij

)
(30)

where
[

∂f

∂D

]
ij

=
M∑

v=1

W
(v )
ij exp

(
− (Δ(v )

ij − Dij )2

2σ2

)
· Δ(v )

ij − Dij

σ2

(31)
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Algorithm 2: Algorithm for C-MV-REE.

Input: Δ(v ) , W
Initialization: B0 , η, σ
1: for k = 1 to maximum iteration do
2: Bk = Bk−1 + η ∂f

∂B as in (33)
3: Decompose B into UΛUT (spectral decomposition)
4: [Λ+]ij = max{Λij , 0}
5: Bk = UΛ+UT

6: end for
7: return X = UΛ1/2

and

[
∂D
∂Bij

]
i ′j ′

=

⎧⎪⎨
⎪⎩

−1, (i′ = i, j′ = j) or

(i′ = j, j′ = i),

0, others

if i 	= j

[
∂D
∂Bij

]
i ′j ′

=

⎧⎪⎨
⎪⎩

2, i′ = i and j′ = i

1, i′ = i xor j′ = i,

0, others.

if i = j (32)

Therefore

∂f

∂Bij
=

M∑
v=1

W
(v )
ij exp

(
− (Δ(v )

ij − Dij )2

2σ2

)
· Dij − Δ(v )

ij

σ2

∂f

∂Bij
=

M∑
v=1

N∑
k=1

W
(v )
ik exp

(
− (Δ(v )

ik − Dik )2

2σ2

)
· Δ(v )

ik − Dik

σ2 .

(33)

In (33), the upper and lower equations correspond to the cases
when i 	= j and i = j, respectively.

Convergence analysis: The correntropy loss function f in (29)
is an MN 2 dimensional pseudoconvex function. When gradi-
ent ascent/descent approach is used for optimization, global
convergence is guaranteed provided that the step size is suffi-
ciently small [43]. This will be illustrated by the convergence
curves (see Figs. 6 and 8) in Section IV.

The C-MV-REE algorithm is summarized in Algorithm 2.
One can obtain the MV-REE algorithm by simply replacing the
term (∂f/∂B) by −g0(B). The algorithm returns the N ∗ N
configuration matrix X, whose first k columns that corresponds
to k dominant eigenvalues of B comprises a new N ∗ k configu-
ration matrix X′. X′ can be seen as the explicit representation of
the original data set from which a new dissimilarity matrix can
be calculated. One can also treat X′ as feature vectors, opening
up the possibility of using classifiers other than kNN [such as a
support vector machine (SVM)].

Computational time of C-MV-REE is at the same order of
magnitude as the base method REE. This is because C-MV-
REE differs from REE at step 2 only in Algorithm 2. It takes
M times as much time for MV-REE to run step 2 compared
to REE. Meanwhile, the running time of step 2 for C-MV-REE
is slightly less than twice of that of MV-REE, according to
MATLAB simulation.

Fig. 3. Examples of the uncorrupted image, complete salt and pepper noise,
and partially noisy image.

Although all cost functions and derivations in Sections III-A
and III-B pertain to correntropy only, the same optimization
schemes work for cost functions using generalized correntropy
as well. For C-MV and Ce-MV, the HQ optimization is always
applicable because the expectation function always exists. For
C-MV-REE, it is obvious that the same gradient ascent method
will apply for generalized correntropy with any α.

IV. EXPERIMENTS AND RESULT ANALYSIS

Experiments are performed on both simulated data and real-
world marine animal data. The main objectives of experiment-
ing with simulated data set are to study the C-MV learning
algorithms’ performance in the presence of noise, compared to
algorithms with different cost functions. Multiview algorithms’
superiority over their single-view counterparts is also studied.
The first real-world data are features from color images, on
which the feature-based algorithms (C-MV and Ce-MV) will
be tested. The second data are dissimilarity matrices that are
derived from shape analysis performed on Lidar data, on which
the dissimilarity-based algorithm (C-MV-REE) will be tested.
C-MV-REE is also suitable for the first data set because features
can be turned into dissimilarity matrices.

A. Experiments on Simulated Data Set

1) UCI Handwritten Digit Classification: This experiment
is to test different multiview algorithms for the features.
The C-MV algorithm and its variant, the Ce-MV algo-
rithm, will be tested on the UCI handwritten digit data set
(http://archive.ics.uci.edu/ml/datasets/Multiple+Features). The
data set has 2000 instances equally divided into 10 classes (each
digit is a class). In the experiment, the data set is evenly divided
into two batches, one for training and the other for testing. In
each batch, the proportion of any class is still 10%. Two fea-
tures used for the ith instance are the image itself stretched into
a vector z(1)

i and the Zernike moment z(2)
i , whose dimensions

are 240 and 47, respectively. Two separate noise conditions are
considered for the first feature. In the first condition (see Fig. 3,
left and center plots), a portion of all images (e.g., 250 images
out of 2000) are replaced with salt and pepper noise, which is
a prominent case of non-Gaussian noise. The mean, maximum,
and minimum pixel values of the corrupted images are the same
as the rest uncorrupted images. In the second condition (see
Fig. 3, right plot), a part (e.g., 60 pixels out of 240) of every
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Fig. 4. Left column: Classification accuracy. Right column: Top and center

rows—mean value of a
(1)
i (mean across instance) for C-MV and Ce-MV; bottom

row—mean value of a
(1)
j (mean across pixels) for Ce-MV. Note that a

(1)
j is

unavailable for C-MV. The top row corresponds to the first noise condition,
where 0%, 12.5%, 25%, and 50% of images are replaced with salt and pepper
noise that has the same mean, maximum, and minimum pixel values as the rest
uncorrupted images. The center row corresponds to the second noise condition,
where 0%, 25%, 50%, and 75% of pixels in every image are replaced with the
same salt and pepper noise. The bottom row also corresponds to the second
noise condition, but the magnitude of noise is three times as large as that of the

center row. In all cases, mean of a
(2)
i or a

(2)
j are very close to 1 (around 0.98)

and are not shown in plot.

image are replaced with salt and pepper noise. The other feature,
Zernike moments, is left unchanged for both conditions.

For C-MV σ = 0.5, while for Ce-MV, σ(v ) are rescaled ac-
cordingly. Dimension d of the single-view feature to be learned
xi for both algorithms is set as 60. These parameters are fixed
throughout the experiment. The four other methods used for
comparison are the following:

1) using the first feature (image) only;
2) using the second feature (Zernike) only;
3) using the concatenated feature;
4) the L2-MV algorithm, which employs the L2 cost function

but is otherwise the same as C-MV.
The reason that MISL (which uses Cauchy loss function) is

not compared is that its performance is very close to that of
C-MV under the noise level in this experiment, according to
the analysis in Section II-C. To emphasize the importance of
the cost function being bounded, the L2 cost function is used
instead. For methods (1)–(3), instead of using the features di-

Fig. 5. Comparison of three methods on reconstructing 2-D point set. The
original point set is marked with “*,” with lighter markers denoting points whose
respective distances are uncorrupted by noise, and darker markers denoting
otherwise.

rectly, dimensional reduction is applied by feeding two identical
feature sets into the same C-MV algorithm to ensure that dimen-
sionality will not be a factor for any difference in performance.
The output feature for all six methods will be consequently used
as input to SVM for classification.

Results are shown in Fig. 4. For both noise conditions, ap-
plying multiview learning rather than using a single view will
significantly boost the classification performance. For the first
noise condition (top row), best performances are achieved by
C-MV and Ce-MV. This is because C-MV and its entrywise vari-
ation are able to distinguish the nonnoisy data instances from the
noisy ones, which is reflected by a

(1)
i . The top right plot shows

that the mean value of a
(1)
i across nonnoisy instances is con-

sistently higher than those across noisy instances. Meanwhile,
L2-MV assumes the same importance (1) for every instance,
whereas doing feature concatenation instead of multiview learn-
ing will forcefully give the same importance for different views,
leading to suboptimal performance. For the second condition
with smaller noise level (center row), C-MV and Ce-MV still
have better performance. This is because both algorithms will
correctly give smaller a

(1)
i than a

(2)
i across all instances i. It

can be seen that the more noisy instances there are, the smaller
a

(1)
i is. The advantage of Ce-MV over C-MV begins to show

where noise magnitude is higher (bottom row). As explained in
Section III-A, C-MV can weight instances only, not individual
features (pixels in this setting). Noise on part of the pixels that
is big enough will affect the whole instance. On the other hand,
Ce-MV can effectively separate the nonnoisy and noisy parts
of an instance, giving lesser importance to the noisy pixels and,
thus, enhancing the quality of the learned xi .

2) 2-D Point Set Reconstruction: This experiment is to test
different multiview learning algorithms for the dissimilarity ma-
trices. A 2-D point set with N = 25 points (see Fig. 5) is con-
sidered for this experiment. The goal is to recover the original
configuration given two different views of the point set. The
Euclidean distance matrix is computed from the original point
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Fig. 6. Values of different cost functions for 2-D point set reconstruction.
All red lines represent optimization using MV-REE, and blue lines represent
optimization using C-MV-REE. The upper left figure and upper right figure are
the values of cost functions (27) and (29), respectively. The lower figures, on the
other hand, are values of a fraction of the same cost functions; only the second
view (v = 2) is considered, and the range of i is from 1 to 4 rather than from 1
to 25 (range of j is still from 1 to 25).

set. Noise is then added: For the first view Δ(1) , all distances
pertaining to the first four points are corrupted with salt and pep-
per noise δi,j = di,j + εi,j (i < j), where εi,j has a magnitude
of 10. For the second view Δ(2) , noise of the same type and
magnitude corrupts the 24th and the 25th points. The values of
δi,j are truncated such that δi,j > 0. The two distance matrices
are then symmetrized.

Three methods are compared: MV-MDS [34], MV-REE, and
C-MV-REE, the latter two have been introduced in Section III.
For MV-REE, the initial step size η0 is chosen to be 0.05. The
step size at ith iteration will be η = η0/

√
i according to the

original REE algorithm. For C-MV-REE, η = 0.1, which is fixed
throughout the iterations. They are chosen such that convergence
speed is approximately the same for both algorithms. They are
also small enough to ensure good convergence. Since the median
values of Δ(1) and Δ(2) are 9 and 5, respectively, kernel size σ
is chosen as 3 for C-MV-REE. From the result (see Fig. 5), it can
be seen that MV-MDS performs very poorly as it is based on the
nonclassical MDS framework whose mechanism of preserving
the Euclidean distances is weak. On the other hand, C-MV-
REE achieved a slightly better performance than MV-REE in
recovering points that are uncorrupted by noise, and a much
better performance in recovering points that have noisy distances
in either views. This can be explained intuitively by the fact
that C-MV-REE utilizes well the nonnoisy part in one view
(e.g., points 1–4 in the second view) that is noisy in the other,
which cannot be said for MV-REE. Fig. 6 shows that for both
MV-REE and C-MV-REE, the overall cost functions (27) and
(29) are correctly optimized over the iterations; however, as the
lower figures suggest, C-MV-REE can also correctly optimize
the fraction of (29) that corresponds to points 1–4 in the second
view, while MV-REE cannot.

Fig. 7. Kimia-99 consists of nine different classes of objects, with 11 instances
in each class.

3) Shape Retrieval: The C-MV-REE algorithm is further
tested on the artificial Kimia-99 data set [45], which has been
frequently used as a benchmark for shape retrieval tasks. The
data set is shown in Fig. 7. For every instance, 10 out of 98
most similar instances are found using two algorithms, namely
“SC” [12] and “information point set registration (IPSR)” [46].
Ideally, the ten instances should be from the same class as the
query instance. The highest total number of correct findings is,
thus, 10 ∗ 99 = 990. No additional noise is added to the data,
but the resulting dissimilarity matrices are expected to be noisy
due to variation in shapes and imperfection of SC and IPSR
algorithms.

This experiment will first test the performance of the two al-
gorithms individually. Both SC and IPSR will return 99*99 sim-
ilarity matrices, which are consequently transformed into proper
dissimilarity matrices ΔSC, ΔIPSR (symmetric, main diagonal
are zeros). The ten entries in each row that have the smallest
dissimilar values are considered as being from the same class
as the query. Next, multiview learning algorithms are applied
to combine ΔSC and ΔIPSR. The following approaches are also
tested for comparison purposes: First, heuristic combination
Δheu, which is the elementwise square root of the Hadamard
product ΔSC ◦ ΔIPSR, as in [46]; and second, use (single view)
REE only to obtain a new dissimilarity matrix for each of ΔSC

and ΔIPSR. Parameter settings for SC and IPSR are same as
in [46], except that the nonaffine transformation for IPSR is
not applied in this experiment for its limited effectiveness. Step
sizes for MV-REE and C-MV-REE are 0.02 and 0.01, respec-
tively. Since both ΔSC and ΔIPSR have median values of around
1.9, kernel size σ is selected as 1.5. For all approaches that in-
volve REE, the final configuration matrix X′ is the first eight
columns of X. Table I summarizes the results. It first shows
that REE can greatly improve shape retrieval accuracy even if
only one dissimilarity is considered. This is because REE has
the advantages of being a classical MDS algorithm. Meanwhile,
the assumption that the dissimilarity among the instances can
be quantified by Euclidean distance is also validated. Second,
C-MV-REE achieves perfect retrieval result and outperforms
MV-REE. Fig. 8 shows that both algorithms converge well, yet
MV-REE has heavier oscillation due to its usage of the subgra-
dient method.
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TABLE I
KIMIA-99 SHAPE RETRIEVAL RESULTS

Fig. 8. Values of cost functions (27) and (29) for Kimia-99 data set. Red lines
represent optimization using MV-REE, and blue lines represent optimization
using C-MV-REE.

B. Marine Animal Classification

1) Classification of Color Images: The first marine ani-
mal classification experiment is carried out on color images—
the Taiwan sea fish data set (http://sourceforge.net/projects/
fish4knowledgesourcecode/). The data can be found inside the
“Fish Recognition” folder under the “Files” tab. It has been
studied throughout the European Fish4Knowledge project, in-
cluding works that focus on feature extraction and classification
[1], [47]. The original data set has 23 types of fish and over
20 000 fish instances, from which the seven types with the least
number of instances (in total 237 instances) are used in the
experiment (see Fig. 9). A small data set is used here to be
consistent with the classification task for the UMSLI Lidar. In
the current stage of the test tank experiment and UMSLI de-
ployment, the retrieved data size is also small. There will not
be significant marine animals come into contact with UMSLI
deployment, until the monitoring system has been in place for a
significant amount of time. The two features used for this data
set, namely the CNN feature and the hand-designed feature,
have dimensionalities of 4096 and 2626, respectively. Detailed
descriptions of the two features can be seen in [4].

This experiment will first test the feature-based multiview
algorithms. Kernel size σ is 1 for C-MV and 0.02 for Ce-MV.
Dimension d of x is chosen as 60. Dimensional reduction is also
performed when only a single feature (CNN or hand-designed)
or the concatenated feature is used. Both SVM and 1-nearest

neighbor classifier are tested to evaluate the quality of learned
feature more comprehensively. The data set is randomly divided
into five sections of equal size. As before, in each section, the
proportion of any type of fish equals its proportion in the whole
data. Table II compares classification results for six methods
with different ratios of training and testing data. Reducing the
dimension of data from 4096 + 2626 to a much lower 60 is
shown to be beneficial for classification. On the other hand,
separately input the CNN and hand features into the multiview
learning algorithms (C-MV or Ce-MV) will result in higher
classification accuracy than concatenating the features.

Furthermore, in Table III, it is tabulated that the dissimilarity-
based multiview algorithm (C-MV-REE) is also a viable option.
Any Gram matrix K computed from features with Gaussian
kernel is transformed into dissimilarity matrix Δ first. The value
λ is selected as 50 here

K′
ij = exp (−λKij ),Δij =

2
(K′

ij + K′
j i)

. (34)

This experiment examines whether the REE scheme itself is ef-
fective, and whether multiview learning will outperform heuris-
tic combination of dissimilarity matrix with REE. Kernel size
σ for C-MV-REE is set as 1 (median values for both ΔCNN

and Δhand are around 0.55). It turned out that both REE and
the C-MV learning are beneficial for improving classification
accuracy.

Observing from both Tables II and III, it is clear that using
both CNN and hand-designed features results in better classifi-
cation performance than using one type of feature only. Another
interesting discovery is that CNN features are not as good as
hand-designed feature here, possibly because the generalization
ability of a pretrained CNN is limited on a small data set, which
may differ significantly from the data CNN is trained from.

2) Classification of Lidar Images: Lidar imagery of fiber-
glass replicas of three different species of marine animals (am-
berjack, barracuda, and turtle) have been retrieved from the test
tank at HBOI. The replicas are mounted on six-degree freedom
linear drive such that different poses can be generated. Lidar
return of any object first undergoes noise reduction and volume
backscattering gating. It is then integrated over time, which
generates a 2-D grayscale image. The contour of the object is
then obtained through GrabCut segmentation [48]; see Fig. 10.
The dissimilarity measure between any pair of objects will be
determined by shape analysis in the same manner as in Sec-
tion IV-A3. Details of Lidar image retrieval, segmentation, and
preprocessing are described in [7].

There are 38 testing images in total, 22 of which are obtained
under clear water condition. The rest are collected under turbid
water environment, so it is expected that these 16 objects are
heavily blurred, some not even discernible by human standards.
The images used as templates (labels are known) are 2-D pro-
jections from different perspectives of 3-D models of the three
animal species. These 2-D images are then processed through a
radiative transfer model [7]. For each animal species, ten 2-D im-
ages of different orientations are generated. The two shape anal-
ysis methods used are SC and IDSC. Each method will provide
a dissimilarity matrix of size N*N (N = 10 ∗ 3 + 38 = 68).
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Fig. 9. Examples of color images of fish.

TABLE II
TAIWAN SEA FISH CLASSIFICATION ACCURACY (FEATURE BASED)

For each method, the first row shows SVM results and the second row shows kNN (k = 1) results. C-MV and Ce-MV
have the best overall performance.

TABLE III
TAIWAN SEA FISH CLASSIFICATION ACCURACY (DISSIMILARITY MATRIX BASED)

C-MV-REE has the best overall performance.
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Fig. 10. First row: examples of template images. Second row (left): segmented contours of clear water Lidar images; right: contours of turbid water Lidar images.

TABLE IV
CONFUSION MATRICES FOR HBOI TEST TANK DATA

All results are averaged from the results of SVM and 1NN classifiers. Column
I shows the result for all 38 images, while column II is the result for the 22
clear water images. A, B, and T stand for amberjack, barracuda, and turtle,
respectively.

Like in the previous experiment, six dissimilarity matrix based
approaches will be tested. The median value for both ΔSC,
ΔIDSC are 3.45 so σ is selected as 2 for C-MV-REE. The num-
ber of principal components used k is 8. Classification results
are average values from 1-NN and SVM classifiers. They are
summarized in Table IV. It is evident that the individual method

of IDSC performs considerably better than SC in this problem.
Using REE on the heuristically combined similarity matrix does
not further improve the result. However, the C-MV-REE algo-
rithm still successfully achieves higher classification rate than
any of the other methods.

V. CONCLUSION

The correntropy-loss-based multi-view learning algorithms
are developed for both cases of features (C-MV and Ce-MV)
and dissimilarity matrices (C-MV-REE). In the presence of ar-
tificial noise, methods based on correntropy loss are much more
robust than their counterparts that apply L1 or L2 loss as cost
functions. Multiview learning also performs better than using
single view only or concatenated feature/heuristically combined
dissimilarity matrix.

The developed algorithms are successfully applied to two
real-world marine animal classification problems. The signifi-
cance of the developed multiview learning algorithms for marine
animal classification is not only about improving classification
accuracy; it provides a versatile framework for combining dif-
ferent marine animal data representations, i.e., feature/feature
combination, dissimilarity matrix/dissimilarity matrix combina-
tion, and feature/dissimilarity matrix combination. The current
Lidar data are described by dissimilarity matrices derived from
the 2-D shape analysis, but new properties of Lidar data may be
utilized in the forthcoming real-world experiments, such as fish
texture that appears in the form of features. With the developed
multiview learning algorithms, any new data description can be
utilized along with the existing ones.

For future work, since the optimization techniques for both
C-MV and C-MV-REE can accommodate GC-loss, it might be
interesting to probe into the possibility of employing GC-loss
in multiview learning.
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