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Abstract Environmental monitoring is a critical aspect of marine renewable energy project
success. A new system called Unobtrusive Multistatic Serial LIDAR Imager (UMSLI) has
been prepared to capture and classify marine life interaction with electrical generation
equipment. We present both hardware and software innovations of the UMSLI system.
Underwater marine animal imagery has been captured for the first time using red laser
diode serial LiDAR, which has advantages over conventional optical cameras in many
areas. Moreover, given the scarcity of existing underwater LiDAR data, a shape match-
ing based classification algorithm is proposed which requires few training data. On top of
applying shape descriptors, the algorithm also adopts information theoretical learning based
affine shape registration, improving point correspondences found by shape descriptors as
well as the final similarity measure. Within Florida Atlantic University’s Harbor Branch
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Oceanographic Institute optical test facility, experimental LIDAR data are collected through
the front end of the UMSLI prototype, on which the classification algorithm is validated.

Keywords UMSLI - Optical test facility - Shape matching - Similarity measure

1 Introduction

Marine hydrokinetic (MHK) projects are composed of undersea power generating equip-
ment that converts the energy of waves, tides, or ocean currents into electricity. An
imperative objective when deploying MHK devices is gaining an understanding of potential
harmful interactions between marine animals and equipment at proposed development sites.
Therefore, a high priority regulatory expectation exists to observe marine life interaction
with such devices.

Underwater video observation of MHK scenes is typically accomplished with acousti-
cal or optical cameras [24]. Available active acoustics technologies for fisheries monitoring
can be categorized as either acoustic cameras or sounders. Active acoustic cameras, such as
Dual Frequency Identification Sonar (DIDSON) [19] use acoustic lens technology, which
forms images with greater detail than found in conventional sonars. While reasonably good
estimates of feature dimensions can be extracted from DIDSON images, that level of detail
is only available at relatively short ranges and with an angular field of view where image
resolution is highest. Consequently, data bandwidth and storage become problematic. 2D
imaging sonars can also provide high-quality output, but with limited angular field of view
and range [6]. Acoustic sounders, on the other hand, are a standard instrument of fisheries
hydroacoustics. These instruments can reach a long distance (hundreds of meters), but lack
resolution and evaluation intuitiveness. Unlike active acoustic solutions, the primary advan-
tage of using optical approaches is high resolution contrasted scene descriptions essential
for detailed observations and object classification. Another advantage of optical imagery
over acoustic data, is that it is more intuitive and easier to understand for humans. How-
ever, optical cameras are most effective when significant ambient light is present and when
turbidity is low. Even the most sophisticated commercially-available underwater camera
technologies require significant artificial white light to illuminate low light scenes. This is
not desirable for MHK monitoring, because artificial light can alter the behavior of the ani-
mals being monitored. For example, it has been observed that marine life is attracted to
light-emitting sources of wavelengths within their visual light frequency range.

The red laser diode serial Light Detection and Ranging (LiDAR) imager system we have
developed combines the advantages of traditional optical and acoustic solutions while over-
coming their disadvantages when applied to MHK environmental monitoring. This new
approach is an adaptation of an existing technology that can be easily mounted on or around
different classes of MHK equipment. The system is compact, cost-effective, and uses red
laser illumination to be invisible and eye-safe to marine animals [20]. The equipment is
designed for long-term, maintenance-free operations. It generates a sparse primary dataset
that only includes detected anomalies, thus allowing for efficient, real-time, automated,
low bandwidth animal classification/identification. The system is known as Unobtrusive
Multistatic Serial LIDAR Imager (UMSLI). Applying LiDAR to MHK environmental mon-
itoring is advantageous in several aspects. Firstly, red laser is beyond the visible wavelength
range to most marine life, making it unobtrusive. Red laser illuminators can also be con-
figured below the maximum permissible exposure (MPE) limit for humans. Second, unlike
conventional optical camera whose focus is governed by the lens, LIDAR imagery focus is
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governed by the laser beam spatial characteristics. LIDAR imagery thus remains in focus
throughout the entire range, which is ultimately limited by attenuation at approximately
5m to 8m in typical coastal conditions [14]. Third, the system detection limit and Signal-
to-Noise-Ratio (SNR) are superior to cameras, due to the rejection of both backscattering
and ambient solar background. This is achieved by time-gating, as well as more concen-
trated photon energy using a single element detector [7, 8, 23]. Fourth, the fact that laser
beams have single frequency makes them strictly parallel inside seawater, enabling the
measurement of an object’s size.

One critical part of UMSLI software design is the classifier, which labels an incoming
instance that has been detected. Compared to optical images of marine animals in a previous
study [3], marine animal LiDAR imagery is unique because there are virtually no existing
open-source underwater animal life LIDAR images available. As such, the popular convo-
lutional neural network (CNN) approach is not a good choice for UMSLI, as CNN needs to
be trained from a large number of labeled data. Pretrained CNN using ImageNet [10] is not
valid either, because natural images and LiDAR images are so different that domain adap-
tation will be problematic. This paper proposes a novel classifier based on shape matching.
LiDAR image of an object (e.g. a fish) is 2-D grayscale after time integration. The shape of
the object’s boundary is highly descriptive of the object, which is the reason that a shape-
based approach is used. Most shape matching techniques [1, 11, 15, 27] develop a descriptor
for every point on a shape, then compare a pair of shapes by matching the descriptors and
calculating the matching cost. This process puts two shapes in a high dimensional space, yet
it overlooks the possibility of comparing the shapes directly in the original 2-D space. This
paper goes one step further by utilizing the descriptors for affine registration and its accom-
panying similarity measure, which is inspired by concepts from information theoretical
learning [13, 16]. Such registration will in turn yield more accurate point correspondences
as compared to using shape descriptors. Both the 2-D space similarity score and improved
point correspondences will positively impact the final classification performance. It is worth
noting that from a pure shape registration perspective, many non-rigid shape matching algo-
rithms [17, 18] can achieve good results. However, non-rigid models are problematic for
classification tasks, as excessive non-rigid morphing can cause objects of different species
become indistinguishable. In addition, non-rigid models have a much larger computation
expense. Therefore, an affine model is chosen over a non-rigid one. The classifier devel-
oped in this paper is well-suited for MHK site monitoring because of its fastness, accuracy
and ease of implementation.

The UMSLI prototype was developed and validated at the optical test facility at Harbor
Branch Oceanographic Institute (HBOI). The main focus of this paper will be the sensing
and image understanding blocks of the prototype. The remainder of this paper is organized
as follows. Section 2 introduces the UMSLI system (including the sensing hardware and
other functionalities), as well as the experimental environment - the HBOI optical test facil-
ity. Section 3 details the shape matching based classifier. Section 4 discusses the results
from the test tank experimental data. Section 5 concludes the paper.

2 Underwater LiDAR sensing system
The UMSLI is an integrated system with a two-tiered design (see Fig. 1) consisting of
sensing hardware, image understanding (enhancement, detection, classification) and data

archiving functional blocks. Level-one monitoring (i.e. focus of attention) detects the
presence of any potential marine species to be monitored using a sparse scan. If detected, the
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Fig. 1 Two-tiered processing framework of UMSLI

region of interest will be provided to the sensing front end to acquire classification-quality
images via high resolution dense scan. Then classification is accomplished in Level-two
classification block. The two-tiered detection/classification design enables real-time mon-
itoring while significantly reducing the data volume for MHK site surveillance when the
occurrences of the objects-of-interest are sparse. This design results in significant savings
for the time and resource needed to deploy such monitoring system at an MHK site.

It should be noted that detection needs to be real-time, while classification does not. This
is because real-time detection ensures that high resolution scan can be properly engaged by
changing the laser focus area to the object of interest. On the other hand, certain latency for
the classifier is allowed, since it takes time for an animal to possibly come in contact with
the turbine after its first entrance into the field of view. As the animal is detected at 5-10m
distance, the estimated time is 5-10 seconds assuming that the animal moves at 1m/sec.

2.1 Functional blocks

This section (Section 2.1) mainly explains the pre-processing, detection and post-processing
functional blocks. The LiDAR sensing functional block is covered in the hardware descrip-
tion section (Section 2.2). The classification functional block will be detailed in Section 3.
2.1.1 Pre-processing

To enhance the signal-to-noise ratio of the LIDAR traces, the signal conditioning sub-blocks

(see Fig. 2a) prior to level-one detection and level-two classification adopts the technique
developed in [22]. The LiDAR returns will be enhanced prior to any further analysis. The
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Fig. 2 a Processing flow of bilateral pulse shaping LiDAR signal enhancement; (b) Illustration of the noise
floor and low SNR object reflection in a LIDAR trace

noise floor will be established through historical monitoring, as shown in Fig. 2b. The
spatial correlation of the adjacent LiDAR pulses is exploited via the bilateral principle, fol-
lowed by the deconvolution using the point spread function (PSF). The PSF can be predicted
by a high-fidelity radiative transfer model: Electro-Optic DEtection Simulator (EODES)
developed jointly by HBOI and Metron Inc. [12].

2.1.2 Detection and segmentation

Object detection is the foremost step for classification. A simple detector will threshold
the image. Groups of adjacent pixels with gray-level values higher than the threshold form
“blobs”. If any blob contains a given threshold number of pixels (e.g. 100), it will be con-
sidered as an object. A valid threshold value choice is median(image) — 10. Since input
to detection is the low resolution sparse scan image, motion history imaging (MHI) can be
performed to increase the “footprint” of a moving object, typically an animal. MHI cap-
tures the signature of a moving object by computing the binary frame difference at two time
instances. An illustration of the MHI of a fast moving object (e.g. a dolphin) is shown in
Fig. 3. If the object is static or slow moving, the MHI step can be bypassed to reduce the
reaction time during the detection stage. Note that detection locates the objects but does not
give exact segmentation for the objects.

Level 1 Monitoring

Sparse survey of overall area
t=0

Level 1 Monitoring

Sparse survey of overall area
t=1

Fig. 3 MHI of fast moving object

Level 1 Monitoring

Sparse survey of overall area
t=1
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If an object of potential interest is detected, it must be consequently converted into con-
tour which is the input to the classifier. Following the detection step, a bounding box is put
onto every object. The images are then processed such that the contrast is enhanced and the
pixel value is constrained between 0 and 1:

)]

I(x,y)=1 —exp( 256 — Io(x, y) )

o (256 — min(lp)

In (1), 0 = 0.4. Automated segmentation for the processed images can be performed by
GrabCut [25]. GrabCut is an iterative method that minimizes the energy function E, in order
to separate background and foreground/object:

E(a,k,0,2) =U(a.k, 0,2) + V(a,2) (@)
In (2), U and V stand for data term and smoothness term, respectively. The data term is

Uk, 0,2) = 3, (—logm (e, kn) + 5 log |o (o, k)|

3
+m[ZH — (o, kn)]2) ( )

and the smoothness term is

V)= Y —ylan —aplexp(—Bllzn — zll) )

(m,n)eC

In both terms, o specifies whether any pixel z, belongs to the background (¢, = 0) or
foreground (o, = 1). In term U, k ranges from 1 to K, K being the number of Gaussian
Mixtures (described by @ which includes coefficient 7, mean p and variance o) in either
background or foreground. Term U can be viewed as the sum of the Mahalanobis distance
between a pixel and its nearest Gaussian among all 2*K Gaussian mixtures. In term V, C
indicates that m and n are neighboring pixels. Unlike term U, term V stresses the importance
of putting neighboring pixels of similar intensity in the same background/foreground. The
formulas (3) and (4) slightly differ from the original ones [25] in that the pixels z,, here are
scalar values rather than 3*1 RGB vectors.

2.1.3 Post-processing

Data post-processing includes database index embedding and database index retrieval and
query, both of which are based on digital watermarking. There are two possible watermark
embedding approaches. The first is to replace the least significant bit (usually red channel)
with watermark, the second is to use Zernike moments based embedding [21]. Compara-
tively, least significant bit replacement is simple to implement and has higher watermark
embedding capacity, but it is more susceptible to high noise than Zernike moments based
embedding.

2.2 Hardware design

The hardware design is based on the distributed serial pulsed laser imaging system concept
[8,9].

The UMSLI sensing front end consists of receiver(s) (Rx), transmitter(s) (Tx), and a dig-
ital signal processor (Fig. 4). Transmitters artificially “illuminate” a volume of water around
an MHK device and receivers collect time-resolved returns from the laser pulses. The Rx
and Tx components are off-the-shelf, inexpensive and robust. The system thus becomes
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Fig. 4 UMSLI sensing front end

highly feasible with respect to Technology and Manufacturing Readiness Levels (TRL and
MRL) and end-user operating costs. The initial prototype for each bidirectional transmit-
ter housing Bill of Materials (BOM) cost is approximately $7k, while each bidirectional
receiver BOM cost is $5k. The initial prototype system design has been validated in the
HBOI optical test tank. The next phase of the development work will include the initial pro-
totype system to be tested at-sea during the fall of 2016. This will allow for an evaluation
of the performance of the sensor in real conditions at a range of depths and turbidities, and
also allow for an assessment of the effectiveness of the proposed deployment methodology.

Fig. 5 Prototype bidirectional transmitter (/eft) and receiver (right) assemblies (CAD model — top; photos —
bottom) which were used during the test tank validation and performance evaluation testing
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The prototype bidirectional transmitter and receiver assemblies, which were used dur-
ing the test tank testing phase, are shown in Fig. 5. The Tx contains a pair of bidirectional
scanned LiDAR transmitters, each consisting of a high power laser diode at 638nm, driven
by a pulse driver that can generate 10W peak power pulses of 5 ns pulse duration (FWHM)
at up to 1 Mpps pulse repetition rate. The laser pulses are then scanned in a bidirectional
raster scan pattern using an Analog Micromirror Device (AMD) over a total scan angle of
60 degrees by 60 degrees. The Rx consists of a 18cm diameter sphere containing a pair
of bidirectional red sensitive, large aperture, high speed, high sensitivity receivers. Each
receiver consists of a high pass filter to reject optical energy at wavelengths shorter than
630nm, a 24mm x 24mm Photomultiplier tube (PMT) module with 12% quantum effi-
ciency at 638nm and a 2 ns FWHM impulse response time. The Tx and Rx housings are both
connected to an electronics housing that contains a PXI command, control and acquisition
computer with a maximum of four simultaneous 12 bit digitizer channels, with maximum
sample rate of 2 Gsps. For the experiments described herein, the digitizer channel is 8 bits,
operating at 1 Gsps.

UMSLI’s hardware configuration grants many favorable properties for LIDAR sensing.
For example, multiple wide-angle pulsed laser illuminators and an array of single element
photon detectors can be configured to cover a 4pi steradian (i.e. omnidirectional) scene
volume. Consequently, three dimensional features of animal targets can be retrieved and
clutter is rejected from time-resolved information. Moreover, the transmitter operates in an
adaptive mode and can be reconfigured very quickly. Under the sparse scan mode, it projects
a sparse grid of pulses with higher peak power for longer range detection of animals within
a zone of interest, which is greater than 10m in typical coastal conditions. Under the dense
scan mode, it generates high resolution imagery for identification of marine life at closer
range.

2.3 The HBOI optical test facility

The Ocean Visibility and Optics Lab at HBOI developed a unique test facility (Fig. 6) using
the funding provided by the Office of Naval Research (ONR). The test facility is capable
of extensive testing of many different electro-optical system configurations under a range
of environmental conditions. During the validation tests within the test facility, the image
quality is measured using a USAF-1952b technical target with 0.5m? dimensions, placed at
5m distance from the imaging system.

Fig. 6 HBOI underwater electro-optics testing facility
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The facility contains a 40ft long, 22ft wide and 7ft deep test tank. There are three attached
labs surrounding the test tank. Within these labs, there are in total seventeen different view-
ports allowing different system configurations to be investigated. There are flexible in-water
target and illumination housing installation options, including a rotating target drum with
a maximum stand-off distance of 38ft and a four-degree-of-freedom linear driver for in-
water target and illuminator mounting. Circulation jets in the tank can maintain controlled
particle suspensions (stable up to ¢ = 4m~!). Sensor carriages, underwater radiometers,
AC-9 transmissometers (WET Labs) are installed to provide in-situ inherent optical prop-
erties measurements during an experiment. 70,000 black spheres can be deployed on the
water surface to block out solar ambient light and minimize internal reflections during an
experiment.

The image quality goal and actual outcomes are summarized in Fig. 7. In clear water, the
image resolution is 0.25cm. At higher turbidity (attenuation coefficient ¢ = 0.73 m~!), the
achievable resolution is 1cm, which is above the original system design goal. Type images
acquired during the tests in clear water and at a high turbidity of ¢ = 0.73 m~! (equivalent
to turbid coastal condition with diver visibility of approximately 3 meters) are shown in
Fig. 5.

For the marine animal classification experiment, taxidermy replicas of three marine
species (amberjack, barracuda, and turtle) are mounted in on a four degrees-of-freedom
robotic stage in the HBOI optical test tank. The experiment is detailed in Section 4.

3 Shape matching-based classifier

In Section 3, a shape is characterized by N 2-D points on its (outer) contour. The word
“shape” is used interchangeably with the point set. A “query shape” Y is the shape whose
label is going to be found, whereas a “template shape” X has a known label.

3.1 Point correspondence

Point correspondence between a pair of shapes can be established in two steps. During the
first step, the descriptor at every point on both shapes are calculated. Then in the second
step, the best matches between the descriptors are found. SC [1] and IDSC [15] are among
the best-known descriptors for measuring shape similarity. SC describes a point x; by its

a b
P — i Smallest
CSNR Resolvable
Turbidity level CR (raw image) Bar
Clear water GOAL | 0.7 15 lcm
Clear water
RESULTS 0.8 20 0.25cm
>4 beam
[ attenuation 0.2 8 2cm
— f lengths GOAL
I" 2 >4 beam
— ”I I attenuation 0.3 3.23 (processed: 8.5) 1cm
lengths RESULTS

Fig. 7 Image quality achieved with the UMSLI prototype. a Technical target used for evaluation; (b)
Achieved image quality metric
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Euclidean distance to all points x; (j = 1,...,N) on the same shape, as well as the angle
formed by the tangent line at x; and the line connecting x; and x;. With n, bins for distance
and ny bins for angles, a 2-D histogram is built. The histogram is then stretched to a n,*ng
vector hy; which is the descriptor for x;. Conceptually, SC is a rich, global and rotational
invariant descriptor. The IDSC is an extension of SC, which uses the shortest path inside
the shape between two points for calculating “inner distance” and “inner angle”, rather than
using the line segment directly. IDSC performs better than SC on many shape discrimination
tasks, especially those involving articulate invariant objects (e.g. scissors).

Following the calculation of descriptors, a cost matrix C will be built, whose (i, j)"
entry denotes the cost of matching y; to X;. Assume x? distance is used:

- ny*ng [hy; (k) — hy; (k)]2
CQi.xj) = ]{2:; m ¥

The best correspondences (y;, X)) (i = 1,...,N) will minimize the descriptor cost that is
the sum of cost over all correspondence pairs:

N
descriptor_cost = Z C(yi, X)) (6)
i=1
The correspondences can be computed using the Hungarian algorithm [1], which is a com-
binatorial optimization algorithm that iteratively switches a matrix’s rows such that the trace
is minimized. For ease of use, the points of the template shape in Section 3.2 are reordered
as X = {X,’}tN: {» Where x; corresponds to y;.

3.2 MCC affine registration

The principles of doing affine registration using the maximum correntropy criterion (MCC)
have been presented [2] and is reviewed in this section. With the availability of point
correspondence, affine registration can be formulated as an optimization problem. Affine
transformation performed on template shape - ordered points X = {x; }fV: | can be expressed
as f(X) = XA. X and transformation matrix A are originally 2-dimensional, but applying
homogeneous coordinates makes them N*3 and 3*3, respectively. To find a reasonable A, a
common practice is to minimize the mean squared error (MSE) between transformed tem-
plate XA and query Y = {y,-}l{V: |- However, MSE will become suboptimal in the presence
of outliers (wrong correspondence). Instead, the maximum correntropy criterion (MCC) is
chosen because of its robustness to outliers [16]:

N

A = argmax Z Go (%A, Yi) )
i=1

where G, (x, y) = ﬁ exp (— %). By taking derivative with respect to A and solving

the equation one gets

D =diag(Gs(f(x1),¥1), ... Go (f(XN), YN))
Anew = (fFX)TDf (X))~ (f(X)DY) (®)
Aj :AjflAnew» f(X):XAj

Equation (8) is a fixed point solution whose convergence can be guaranteed [4]. A is
initialized by I3,3. A maximum of 50 iterations are performed unless the stopping criterion
[IXA; — XA; ]| < 1074||Y|| is reached. The choice of kernel size o is an important
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Table 1 Summary of similarity measures used in the paper

Method 1 Method 2 Method 3 Method 4

SC cost SC cost + instant corr. cost IDSC cost IDSC cost + DP corr. cost

Method 1 and 2 have been implemented in previous work [2]

issue. When o becomes very large MCC (7) degenerates into MSE, which is not as good
in dealing with outliers. Meanwhile, o that is too small may cause the solution to stuck at
local minima. A good initial kernel size o is the mean distance of all points in the query
dp, which is obtained during the computation of shape descriptor. Annealing is necessary
to ensure fast convergence. During the first 20 iterations, an annealing rate of 0.9 is used.

3.3 Shape similarity measure

Solving for point correspondence automatically gives the descriptor cost (6), which is the
similarity measure used in literature [1, 15]. With the affine registration given in Section 3.2,
it is expected that some new similarity measure that benefits from the registration may exist.
One such measure is the “instant correntropy cost” [2]:

N
instantcorr_cost(X,Y) = Z Gy (yi, f(xi)) (&)

i=1

The instant correntropy cost has two advantages. First, although the majority of point cor-
respondences are correct, many others are not (e.g. a fish’s head matches with tail). The
descriptor cost associated with these incorrect correspondences will be incorrect. On the
other hand, because of correntropy’s nice property of being local, the correntropy cost on
the any incorrect correspondence is close to zero. Second, the correntropy cost does not
require extra computation because it derives naturally from (7). The kernel size is chosen as
the o after the last iteration during the fixed point solution.

Another registration-based similarity measure is called the dynamic programming (DP)
correntropy cost. Consider the optimization problem

N
argmin A, Zd(yi, fXr@y)), stomw(@) <m(j), Vi <j (10

i=1

In (10), Y and f(X) are the pair of registered shapes, while d denotes Euclidean distance.
This is because an intuitive way for finding a correspondent point on the other registered
shape is to search the nearest point. The constraint is based on the fact that all points are on
the contours and are hence ordered. Therefore, DP [5] can be applied to solve the optimiza-
tion problem. One parameter associated with DP is the penalty t for leaving y; unmatched
(7 (i) = 0), which is set as d,, in Section 3.2. After the correspondences (i, 7 (i)) are found,
the DP correntropy cost can be calculated:

N

DP _corr_cost(X,Y) = Z Go (yir [ Xn(i)) (1D
i=1,7(i)#0
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Fig. 8 Illustration of shape registration and similarity cost evaluation. The MCC affine registration results
are good for both SC (upper right) and IDSC (lower left) descriptors. Yet neither descriptor actually gives
perfect correspondences. The instant correntropy cost will “suppress” bad correspondences, while the DP
correntropy cost is based on refined correspondence given by (10)

Similarity measures can mix with one another in a heuristic manner, such as linear
combination [1]. A new similarity measures will thus be used in this paper:

descriptor _cost(X,Y)
new_cost(X,Y) = (12)
corr_cost(X,Y)

In (11), descriptor _cost may denote SC cost or IDSC cost, and corr_cost may denote
instant correntropy cost or DP correntropy cost. Table 1 summarizes the 4 similarity
measures tested in this paper. The methods are further illustrated in Fig. 8.

The 4 methods are tested firstly in an artificial dataset named Kimia 99 [26]. The dataset
consists of 9 different categories of objects, with 11 instances in each category. For any
instance that serves as the query shape, 10 out of 98 matches that yield the smallest cost
are found. The total number of top one to ten correct matches are presented in Table 2.
Clearly, applying correntropy cost on top of descriptor cost renders better results than apply-
ing descriptor cost alone. For both this experiment and the experiment in Section 4, the
parameters are set as N = 100, n, =7 and ng = 12.

Table 2 Shape retrieval results for Kimia 99 dataset

Method 1st 2nd 3rd 4th Sth 6th Tth 8th 9th 10th
Method 1 99 97 97 97 96 94 94 88 84 81
Method 2 99 99 98 98 98 98 98 93 90 79
Method 3 99 97 96 95 90 85 82 76 66 50
Method 4 99 97 97 97 96 95 95 94 87 68

Method 2 outperforms Method 1, and Method 4 outperforms Method 3
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Fig. 9 Left: original LIDAR image (summed over time 1-128). Center: LIDAR image after bilateral filtering
and thresholding. Right: temporal waveform on all image and on individual objects. The top row shows the
clear water image while the bottom row shows ¢ = 0.73 image

4 Discussion of experimental results

The experimental data are collected under two different turbidity levels: clear water and
and at beam attenuation coefficient ¢ = 0.73. For each turbidity level, 8 separate trials are
taken place. Every trial produces an image that contains one amberjack, one barracuda,
and one turtle, although one should consider neither the number nor specie of the ani-
mals to be known before classification. For each trial, the orientations of the objects are
adjusted randomly before the images are acquired. The spatial resolution of an image is
200%200. If one looks from the temporal perspective, each pixel is a 1-D waveform of
length 128.

4.1 Detection and contour extraction

The 1°7 trial of clear water image and the 1°7 trial of ¢ = 0.73 image are taken as examples.
The left plot of Fig. 9 shows the original image where pixels are summed over all 128 time
instances. The solid black line in the right plot is the waveform summed over all pixels. Its
first and second peaks are the backscatter and the LiDAR return of object(s) respectively, as
backscatter typically precedes object LiDAR return. By time-gating to keep only the second
peak (time 43-52), the objects become more prominent. It is seen that LiDAR return for
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Fig. 10 From top to bottom row: objects with bounding box; objects after enhancement using (1); initializa-
tion of GrabCut; result of GrabCut. The first 3 columns are from a clear water image (upper left of Fig. 9),
while the last 2 columns are from a turbid water (¢ = 0.73) image (lower left of Fig. 9)

¢ = 0.73 is much weaker than clear water image. The image then goes through bilateral
filtering (Fig. 2a) as a pre-processing step and thresholding, resulting in the center plot of
Fig. 9. It follows that 3 objects are identified in the image. The colored lines in the right
plot depict the waveform of the 3 objects. As the peaks of the waveform heavily overlap
with each other, it is impossible to separate the objects with temporal slicing. This means
temporal information is the only information one can utilize here for detection and the
following segmentation.

It should be noted that although there are 3 objects in every image, there are only 22
visually discernible objects in all 8 clear water images, and 16 discernible objects in images
with ¢ = 0.73. The indiscernible objects are either too small, too blurred or under the
occlusion of another object.

For GrabCut segmentation, parameters are set as follows: K =3, 8 =1, y = 100 for all
8 clear water images. For the more turbid images with ¢ = 0.73, y is set to 1000. GrabCut
needs an initialization of background and foreground, which is done by marking the top
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Fig. 11 Chosen template shapes. From fop to bottom: amberjack, barracuda, turtle

25% pixels with largest intensity as foreground. The center row and bottom row of Fig. 10
show the initialization and final result of GrabCut.

4.2 Template generation

For each specie, a three-dimensional model is generated from a prototype model down-
loaded from the internet, using the software Blender. The 3-D model is then projected
onto different 2-D planes, producing 256 2-D template shapes. As many of the templates
share a considerable amount of similarity with others, it is desirable to choose a few “rep-
resentatives” from all 256 templates, which will also significantly reduce computational
time in the following classification step. This requires all templates to be represented in
the form of vectors, on which a mode-seeking algorithm will be performed. To this end,
one can build a 256*256 similarity matrix M using one of the aforementioned methods
(e.g. method I). A shape is represented by the corresponding row vector in the similarity
matrix after row-wise normalization. The K-means algorithm is then applied to the 256
vectors such that K clusters are found. Within each cluster, the “representative” is simply
the vector that has the smallest L1-norm. For K = 10, the chosen templates are shown in
Fig. 11.

4.3 Classification results

The query will be matched with all available templates, and classified as the specie of the
template that yields the smallest cost (1 nearest neighbor classification).

The clear water query images has in total 8 amberjacks, 6 barracudas and 8 turtles. Three
different usages of templates are considered. In the first case, all 256 simulated templates for
each specie are used. In the second case, one randomly selects 10 templates out of all 256.
For this case, 1000 Monte-Carlo trials are conducted and the average accuracy is reported.
In the third case, 10 templates are chosen in the manner described in Section 4.2. All 4
methods for measuring similarity described in Section 3 are implemented, making it 12
combinations in total. For every template usage and every method, a 3*3 confusion matrix
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Table 3 Classification result (FPR/FNR) of clear water images

I I 1 v Average of I-IV
All 256 0.21/0.39  0.14/0.26  0.09/0.17  0.09/0.17  0.13/0.25
Random 10 0.21/042  0.18/0.36  0.10/0.21  0.08/0.17  0.14/0.29
Chosen 10 0.16/0.32  0.12/0.24  0.07/0.14  0.04/0.10  0.10/0.20

Average of different template usages  0.19/0.37  0.14/0.29  0.08/0.17  0.07/0.14

Methods I, II, IIT and IV refer to the methods mentioned in Section 3. Effectiveness of any method is best
reflected in the last row (average of different template usages). Similarly, effectiveness of any template usage
is best reflected in the last column

is obtained. The respective false positive rate (FPR) and false negative rate (FNR) values
are calculated as follows. For any specie (i.e. amberjack, barracuda or turtle),

FPR = (total false positives) / (total false positives + total true negatives)

FNR = (total false negatives) / (total false negatives + total true positives)
13)
The FPR and FNR reported in Table 3 are the mean values of FPR and FNR for all 3 species.
For ¢ = 0.73 query images (8 amberjacks, 3 barracudas and 5 turtles), the experiments
for clear water images are repeated. In addition, it is critical to examine whether the query
shapes generated from clear water images serving as templates can enhance classification
accuracy. Therefore, two additional cases are added to the existing three. The first case
uses the 10 chosen simulated templates altogether with 8 shapes from clear water images
as templates, while only the 8 clear water image shapes are used as templates in the second

case. The confusion matrices are shown in Table 4.

Result analysis A major conclusion to be drawn from Tables 3 and 4 is that Method 1T
outperforms Method I (Method II results in smaller FPR and FNR), and Method IV outper-
forms Method III. In other words, applying shape matching always improves classification
result. This is in accordance with the results on Kimia-99 data. Overall speaking, Method
IV here also performs better than Method II. For the clear water case, the advantage of using
10 templates chosen by the method in Section 4.2 is obvious: not only does it top randomly
chosen templates, but its performance is also even better than using all 256 templates. This
indicates large redundancy in the original 256 templates. For ¢ = 0.73, the incorporation of
templates from clear water images is very beneficial, to the extent that the result of using

Table 4 Classification result (FPR/FNR) of ¢=0.73 images

I I I v Average of I-IV
All 256 0.31/0.64  0.09/0.22  0.13/0.23  0.09/0.15  0.16/0.31
Random 10 0.25/0.49  0.18/0.37  0.17/0.30  0.16/0.26  0.19/0.36
Chosen 10 0.23/0.46  0.16/0.35 0.17/0.28 0.14/0.23  0.18/0.33
Chosen 10 and clear water data 0.16/0.26  0.05/0.08  0.09/0.15  0.09/0.15 0.10/0.16
clear water data 0.16/0.26  0.05/0.08  0.09/0.15 0.07/0.11  0.09/0.15

Average of different template usages  0.22/0.42  0.11/0.22  0.13/0.22  0.11/0.18
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Table 5 Upper table: average time (in seconds) of computing the descriptor of one query

Method image processing + GrabCut compute SC compute IDSC
Method 1,2 0.50 0.021 0

Method 3,4 0.50 0 0.033

Method descriptor cost registration correntropy cost
Method 1 0.0069 0 0

Method 2 0.0069 0.0020 0.00027
Method 3 0.0069 0 0

Method 4 0.0069 0.0020 0.0011

Lower table: average time of computing pairwise similarity measure with one template

clear water images templates alone cannot be improved upon. This shows higher similar-
ity between two sets of test tank data under different turbidity than between the simulation
templates and test tank data.

Table 5 summarizes the time for classifying a query object. As templates can be stored,
one needs only to get the query’s contour and compute its descriptor, then calculate the
pairwise similarities with all templates available. The upper table shows that image segmen-
tation and post-processing is more costly than computing the descriptor for classification.
The lower table suggests that the extra computational cost brought by shape registra-
tion and correntropy cost computation is relatively small compared to the descriptor cost
itself.

5 Conclusion and future work

A UMSLI system with LiDAR sensing hardware, classification algorithm, and image under-
standing functional blocks has seen initial success in experiments conducted in a test facility.
The incorporation of MCC affine registration into traditional shape descriptors boosts clas-
sification performance, while additional computation cost is low. It has also been confirmed
that even without real LIDAR images, classification results are still satisfactory given that
appropriate simulated data are used as templates, but results can be further improved if real
data are available. To better integrate simulated and real data, manifold learning will be con-
sidered in the future for its ability to learn the space in which both real-world and simulated
training data lie.

The upcoming field testing approach will involve attaching Rx, Tx, and digitizer hous-
ings to a deployment frame connected via electro-mechanical cable to a moored vessel. This
will allow for baseline validation testing. Subsequent energetic site testing, if an MHK sys-
tem is available, will involve strategically attaching the UMSLI components to the MHK
device to demonstrate satisfactory field of view coverage. Although the system can consume
low power (~49W) and it is optimized to maximize data storage, long term deployments
will require external power and data connection to shore. Further development and test-
ing should include additional exposure to new marine life species in order to develop a
comprehensively trained classifier.
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