Search MHK Data
Showing results 1 - 4 of 4.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
TEAMER: Electrically Engaged Undulation (EEL) System
The Electrically Engaged UnduLation (EEL) system is a buoyancy-driven submersible device for powering oceanographic instruments. Physically, EEL is a slender body whose flexible spine is made up of energy units interconnected by uniaxial hinges. Each unit consists of a pair of pie...
Lu, K. Pyro-E
Dec 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Initial Testing of Wave Energy-Powered UV-C LED Anti-Biofouling System, Post-Access Report, 3newable LLC
Biofouling severely limits the quality of data coming from buoy-mounted sensors. 3newable is co-developing a unique solution to the biofouling problem together with the Ocean Observatories Initiative (OOI) at WHOI to design and build a buoy-mounted WEC as an integrated power sourc...
Minsky, M. et al 3newable LLC
Sep 20, 2022
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Tidal Currents in San Juan Archipelago, Washington
Re-analyzed acoustic Doppler current profiler (ADCP) data originally collected by NOAA CO-OPS (Center for Operational Oceanographic Products and Services) and equivalent point data from Pacific Northwest National Laboratory's FVCOM (Finite Volume Community Ocean Model) model of th...
Polagye, B. et al University of Washington
Dec 15, 2022
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
TEAMER: Electrically Engaged Undulation System for Unmanned Underwater Vehicles
This TEAMER RFTS 1 (Request for Technical Support) project supported the flume tank testing of a long range, high endurance unmanned underwater vehicle (UUV) to monitor maritime space. Today, battery-powered remotely operated vehicles (ROVs) lack the duration to make persistent, w...
Lu, K. and Datla, R. Pyro-E
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible