Advanced TidGen Power System - Composites Structural Testing

Abstract

Seawater aging response was investigated in marine-grade glass/epoxy, glass/vinyl ester, carbon/epoxy and carbon/vinyl ester composites with respect to water uptake, interlaminar shear strength, flexural strength, tensile strength, and tensile fracture surface observations. The reduction of mechanical properties was found to be higher in the initial stages which showed saturation in the longer durations of seawater immersion. The flexural strength and ultimate tensile strength (UTS) dropped by about 35% and 27% for glass/epoxy, 22% and 15% for glass/vinyl ester, 48% and 34% for carbon/epoxy 28%, and 21% carbon/vinyl ester composites respectively. The water uptake behavior of epoxy-based composites was inferior to that of the vinyl system.

This is an investigation into the mechanical properties of fiber/resin composites and the effects of water saturation on them. State of the technology research was reviewed to select candidates for further testing. Shear strength and shear modulus of different combinations of commercial fibers, resins, and coating systems were determined.

2 Resources

Related Datasets

Datasets associated with the same DOE project
  Submission Name Resources Submitted Status

Additional Info

DOE Project Name: Advanced TidGen Power System
DOE Project Number: EE0007820
DOE Project Lead: Yana Shininger
Last Updated: 3 days ago
Jan
2020
Data from January, 2020
Submitted Jan 7, 2020

Contact

ORPC Inc.


603.969.4295

Status

Publicly accessible License 

Authors

Andrew Krumpe
ORPC Inc.

Keywords

MHK, Marine, Hydrokinetic, energy, power, material properties, mechanical properties, shear strength, shear modulus, technology research, fluid forces, inertial froces, reactive forces, water immersion, testing, material selection, composite structural testing, ORPC, Ocean Renewable Power Company, structural, test, tidal, mechanical, technology, TidGen, composite, lab test, cross flow turbine, CEC, lab data, fatigue, composites, material, modeling, tensile strength, tensile fracture, flexural strength

Share

Export Citation to RIS
Submission Downloads