TEAMER: Sandia and CalWave Torque Spring Assessment

Awaiting release License 

Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type PTO shaft is challenging. SNL in collaboration with CalWave, will use numerical finite element simulations to study application of mechanical torsion springs as a highly efficient restoring force element for CalWave's rotational PTO. Material studies will include common steel as a baseline and potentially advanced materials such as fiber composite materials with different cross-sectional profiles.

Test report including description and results of FEA (finite element analysis) models. Excel sheet summarizes which scripts were used for which tables and figures in the report. Part of TEAMER request for technical support (RFTS 1) award to CalWave and Sandia National Lab (SNL).

Citation Formats

TY - DATA AB - Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type PTO shaft is challenging. SNL in collaboration with CalWave, will use numerical finite element simulations to study application of mechanical torsion springs as a highly efficient restoring force element for CalWave's rotational PTO. Material studies will include common steel as a baseline and potentially advanced materials such as fiber composite materials with different cross-sectional profiles. Test report including description and results of FEA (finite element analysis) models. Excel sheet summarizes which scripts were used for which tables and figures in the report. Part of TEAMER request for technical support (RFTS 1) award to CalWave and Sandia National Lab (SNL). AU - Boerner, Thomas A2 - Gunawan, Budi A3 - Kojimoto, Nigel DB - Marine and Hydrokinetic Data Repository DP - Open EI | National Renewable Energy Laboratory DO - 10.15473/1974164 KW - MHK KW - Marine KW - Hydrokinetic KW - energy KW - power KW - TEAMER KW - PTO KW - WEC KW - wave energy converter KW - submerged pressure differential KW - technology KW - CalWave KW - RFTS 1 LA - English DA - 2022/04/01 PY - 2022 PB - CalWave Power Technologies Inc. T1 - TEAMER: Sandia and CalWave Torque Spring Assessment UR - https://doi.org/10.15473/1974164 ER -
Export Citation to RIS
Boerner, Thomas, et al. TEAMER: Sandia and CalWave Torque Spring Assessment. CalWave Power Technologies Inc., 1 April, 2022, Marine and Hydrokinetic Data Repository. https://doi.org/10.15473/1974164.
Boerner, T., Gunawan, B., & Kojimoto, N. (2022). TEAMER: Sandia and CalWave Torque Spring Assessment. [Data set]. Marine and Hydrokinetic Data Repository. CalWave Power Technologies Inc.. https://doi.org/10.15473/1974164
Boerner, Thomas, Budi Gunawan, and Nigel Kojimoto. TEAMER: Sandia and CalWave Torque Spring Assessment. CalWave Power Technologies Inc., April, 1, 2022. Distributed by Marine and Hydrokinetic Data Repository. https://doi.org/10.15473/1974164
@misc{MHKDR_Dataset_476, title = {TEAMER: Sandia and CalWave Torque Spring Assessment}, author = {Boerner, Thomas and Gunawan, Budi and Kojimoto, Nigel}, abstractNote = {Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type PTO shaft is challenging. SNL in collaboration with CalWave, will use numerical finite element simulations to study application of mechanical torsion springs as a highly efficient restoring force element for CalWave's rotational PTO. Material studies will include common steel as a baseline and potentially advanced materials such as fiber composite materials with different cross-sectional profiles.

Test report including description and results of FEA (finite element analysis) models. Excel sheet summarizes which scripts were used for which tables and figures in the report. Part of TEAMER request for technical support (RFTS 1) award to CalWave and Sandia National Lab (SNL).}, url = {https://mhkdr.openei.org/submissions/476}, year = {2022}, howpublished = {Marine and Hydrokinetic Data Repository, CalWave Power Technologies Inc., https://doi.org/10.15473/1974164}, note = {Accessed: 2025-04-24}, doi = {10.15473/1974164} }
https://dx.doi.org/10.15473/1974164

Details

Data from Apr 1, 2022

Last updated Dec 17, 2024

Submitted Mar 15, 2023

Organization

CalWave Power Technologies Inc.

Contact

Thomas Boerner

510.717.6254

Authors

Thomas Boerner

CalWave Power Technologies Inc.

Budi Gunawan

Sandia National Laboratories

Nigel Kojimoto

CalWave Power Technologies Inc.

DOE Project Details

Project Name Testing Expertise and Access for Marine Energy Research

Project Lead Lauren Ruedy

Project Number EE0008895

Share

Submission Downloads