MASK4 Test Campaign for Sandia WaveBot Device

Publicly accessible License 

This data and report details the findings from a wave tank test focused on production of useful work of a wave energy converter (WEC) device. The experimental system and test were specifically designed to validate models for power transmission throughout the WEC system. Additionally, the validity of co-design informed changes to the power take-off (PTO) were assessed and shown to provide the expected improvements in system performance.

These data describe the "MASK4" wave tank test of the Sandia WaveBot device. The WaveBot device has been tested a number of times in different permutations at the US Navy's Maneuvering and Sea Keeping (MASK) basin. Each test in this series is referred to as MASK1, MASK2, etc. The WaveBot device was first tested in one degree of freedom (heave) in 2016. This MASK1 test focused primarily on system identification and modeling. After MASK1, major modifications were performed to improve the overall real-time control and measurement system, improve the heave drive train, and add surge and pitch degrees of freedom. The second set of testing, which was broken up in to two stages: MASK2A and MASK2B, focused on bench testing and closed-loop control performance as well as nonlinear modeling. MASK3 then focused on multi-input, multi-output modeling and control for maximization of electrical power. The attached report presents the results from MASK4, which focuses on detailed modeling of the power conversion chain and validation co-design principles by way of the introduction of a magnetic spring.

The test log, report, and data from the MASK4 test of the WaveBot augmented with a tunable magnetic spring. Processing codes can be found at the Github link below.

Citation Formats

Sandia National Laboratories. (2023). MASK4 Test Campaign for Sandia WaveBot Device [data set]. Retrieved from https://dx.doi.org/10.15473/2283175.
Export Citation to RIS
Forbush, Dominic, Coe, Ryan, Donnelly, Tim, Bacelli, Giorgio, Gallegos-Patterson, Damian, Spinneken, Johannes, Lee, Jantzen, Crandell, Robert, and Dullea, Kevin. MASK4 Test Campaign for Sandia WaveBot Device. United States: N.p., 25 Dec, 2023. Web. doi: 10.15473/2283175.
Forbush, Dominic, Coe, Ryan, Donnelly, Tim, Bacelli, Giorgio, Gallegos-Patterson, Damian, Spinneken, Johannes, Lee, Jantzen, Crandell, Robert, & Dullea, Kevin. MASK4 Test Campaign for Sandia WaveBot Device. United States. https://dx.doi.org/10.15473/2283175
Forbush, Dominic, Coe, Ryan, Donnelly, Tim, Bacelli, Giorgio, Gallegos-Patterson, Damian, Spinneken, Johannes, Lee, Jantzen, Crandell, Robert, and Dullea, Kevin. 2023. "MASK4 Test Campaign for Sandia WaveBot Device". United States. https://dx.doi.org/10.15473/2283175. https://mhkdr.openei.org/submissions/518.
@div{oedi_518, title = {MASK4 Test Campaign for Sandia WaveBot Device}, author = {Forbush, Dominic, Coe, Ryan, Donnelly, Tim, Bacelli, Giorgio, Gallegos-Patterson, Damian, Spinneken, Johannes, Lee, Jantzen, Crandell, Robert, and Dullea, Kevin.}, abstractNote = {This data and report details the findings from a wave tank test focused on production of useful work of a wave energy converter (WEC) device. The experimental system and test were specifically designed to validate models for power transmission throughout the WEC system. Additionally, the validity of co-design informed changes to the power take-off (PTO) were assessed and shown to provide the expected improvements in system performance.

These data describe the "MASK4" wave tank test of the Sandia WaveBot device. The WaveBot device has been tested a number of times in different permutations at the US Navy's Maneuvering and Sea Keeping (MASK) basin. Each test in this series is referred to as MASK1, MASK2, etc. The WaveBot device was first tested in one degree of freedom (heave) in 2016. This MASK1 test focused primarily on system identification and modeling. After MASK1, major modifications were performed to improve the overall real-time control and measurement system, improve the heave drive train, and add surge and pitch degrees of freedom. The second set of testing, which was broken up in to two stages: MASK2A and MASK2B, focused on bench testing and closed-loop control performance as well as nonlinear modeling. MASK3 then focused on multi-input, multi-output modeling and control for maximization of electrical power. The attached report presents the results from MASK4, which focuses on detailed modeling of the power conversion chain and validation co-design principles by way of the introduction of a magnetic spring.

The test log, report, and data from the MASK4 test of the WaveBot augmented with a tunable magnetic spring. Processing codes can be found at the Github link below.}, doi = {10.15473/2283175}, url = {https://mhkdr.openei.org/submissions/518}, journal = {}, number = , volume = , place = {United States}, year = {2023}, month = {12}}

The test log, report, and data from the MASK4 test of the WaveBot augmented with a tunable magnetic spring. Processing codes can be found at the Github link below.}, doi = {10.15473/2283175}, url = {https://mhkdr.openei.org/submissions/518}, journal = {}, number = , volume = , place = {United States}, year = {2023}, month = {12}}" readonly />
https://dx.doi.org/10.15473/2283175

Details

Data from Dec 25, 2023

Last updated Feb 14, 2024

Submitted Jan 18, 2024

Organization

Sandia National Laboratories

Contact

Dominic Forbush

Authors

Dominic Forbush

Sandia National Laboratories

Ryan Coe

Sandia National Laboratories

Tim Donnelly

Sandia National Laboratories

Giorgio Bacelli

Sandia National Laboratories

Damian Gallegos-Patterson

Sandia National Laboratories

Johannes Spinneken

Evergreen Innovations

Jantzen Lee

Sandia National Laboratories

Robert Crandell

Sandia National Laboratories

Kevin Dullea

Sandia National Laboratories

DOE Project Details

Project Name WEC Co-design

Project Lead Bill McShane

Project Number FY24 AOP 2.1.2.705

Share

Submission Downloads