OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 26 - 50 of 54.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"annual energy"×
Cross Flow Turbine×

Design of high-deflection foils MHK applications FEA models Helical turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
2 Resources
0 Stars
Publicly accessible

Design of high-deflection foils MHK applications CFD models Helical turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Nov 01, 2021
2 Resources
0 Stars
Publicly accessible

Design of high-deflection foils MHK applications CFD models RivGen turbine

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 08, 2021
3 Resources
0 Stars
Awaiting release

Design of High-Deflection Foils MHK Applications FEA models

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
3 Resources
0 Stars
Publicly accessible

Tidal Current Cross-flow Turbine Wake ADV and PIV Data

Measurements in the wake of a high-solidity cross-flow turbine in a laboratory flume obtained using Acoustic Doppler Velocimetry and Particle Image Velocimetry for the purposes of characterizing the turbine wake and comparing the methods.
Polagye, B. University of Washington
Dec 06, 2016
6 Resources
1 Stars
Publicly accessible

Design of high deflection foils for MHK applications CFD files

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Jun 01, 2021
5 Resources
0 Stars
Publicly accessible

Performance Data from a 1-Meter Cross-flow Turbine with High Deflection Hydrofoils

Performance data of a 1-meter diameter cross-flow tidal turbine consisting of three NACA 0018 blades with two support struts with high deflection hydrofoils. Data was collected at the University of New Hampshire Jere A. Chase Ocean Engineering Lab within the tow tank. Three turbin...
Marone, N. et al University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Jul 21, 2021
4 Resources
0 Stars
Publicly accessible

Next Generation RivGen Power System: Kvichak River, AK Overwinter Ice Study

The University of Alaska Fairbanks (UAF) Alaska Hydrokinetic Energy Research Center was tasked with developing a real-time data telemetry / remote power generation system to monitor frazil ice conditions in the Kvichak River in support of the U.S. Department of Energy funded "Next...
Kasper, J. et al Igiugig Village Council
Oct 04, 2017
5 Resources
0 Stars
Publicly accessible

Next Generation RivGen Power System: Risk Register

Risk Register for the RivGen power system, optimized for performance, durability and survivability, in Microsoft Excel format.
Salmon, A. Igiugig Village Council
Oct 05, 2017
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System System Fabrication Plan

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Next Generation RivGen Power System: Feasibility Assessment of Hydroacoutics Data for Development of a Probability of Encounter Model of Salmon Smolts

This document contains a feasibility assessment for salmon smolt characterization and analysis based on existing hydroacoustics data and probability of encounter model.
Daroux, A. and Zydlewski, G. Igiugig Village Council
Oct 04, 2017
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Material Set Selection

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

LCOE and Baseline Data for ORPC's RivGen 1.F River Power System

Base data and documentation of LCOE calculations for ORPC's RivGen 1.F Power System, demonstrated in the Kvichak River at Igiugig, Alaska in 2015.
Salmon, A. Igiugig Village Council
Oct 31, 2016
4 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System 2.0 Presentation of System

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Development Test Plan

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Summary Presentation

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
May 10, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Deployment and Mooring System

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
2 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Preliminary Turbine Hydrodynamic Design

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System 2.0 Final BP1 Turbine Design Technical Report

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Final System Design Technical Report

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System OpenFOAM Version 5 CFD Case Files

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System ProteusDS Version 2.43.5 Files

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

RivGen Acoustic Measurements, Igiugig, AK

Drifting hydrophone measurements obtained around the Ocean Renewable Power Company RivGen turbine near the village of Igiugig, Alaska in August, 2014. Each data set contains hydrophone voltage (as well as gain and sensitivity), position on the river (LAT, LONG, and proximity to tu...
Polagye, B. University of Washington
Jun 06, 2016
1 Resources
1 Stars
Publicly accessible

Advanced TidGen Power System Environmental Assessment

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. et al Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Control and SCADA System

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
2 Resources
0 Stars
Publicly accessible
<< Previous123Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service