OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 1 - 7 of 7.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"North Carolina"×
Modeling×

Geometric, structural, and control co-design for undersea kites

Focusing on a marine hydrokinetic energy application, this paper presents a combined geometric, structural, and control co-design framework for optimizing the performance of energy-harvesting kites subject to structural constraints. While energy-harvesting kites can offer more tha...
Vermillion, C. et al North Carolina State University
Sep 14, 2020
1 Resources
0 Stars
Publicly accessible

Model and experimental validation of ocean kite dynamics and controls

This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission. ...
Vermillion, C. et al North Carolina State University
Mar 01, 2020
2 Resources
0 Stars
Publicly accessible

Spooling control design for flight optimization of tethered tidal kites

This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting different control-based techniques to maximize the efficiency and robustness of a tethered energy-harvesting kite. Below are the abstracts of each ...
Daniels, J. et al North Carolina State University
Sep 16, 2019
3 Resources
0 Stars
Publicly accessible

Control-based optimization for tethered tidal kite

This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting control-based techniques to maximize effectiveness of a tethered tidal kite. Below are the abstracts of each file included in the submission. Cobb...
Vermillion, C. et al North Carolina State University
Mar 02, 2020
3 Resources
0 Stars
Publicly accessible

Modeled Hourly Tidal Current Velocities, Directions, and Heights from May 1 September 1, 2005 at Two Points Near East Forelands and Tyonek in Cook Inlet, Alaska

This dataset includes modeled tidal current velocities, direction and depth at two locations in East and North Forelands (60.716, 151.434 and 61.024, 151.157) near Nikiski and Tyonek, respectively, in Cook Inlet, Alaska. Data from two grid cells were provided by the Pacific Northw...
Bond, B. et al University of Alaska Fairbanks
Oct 05, 2022
3 Resources
1 Stars
Publicly accessible

Northwest National Marine Renewable Energy Center, OR Final Technical Report & Appendices

In 2008, the US Department of Energy (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and ...
Hellin, D. Northwest National Marine Renewable Energy Center
Jun 30, 2016
2 Resources
0 Stars
Publicly accessible

Competing Use Analysis for Offshore Renewables and Subsea Cables

Demand for abundant and diverse resources in the oceans is growing, necessitating marine spatial planning. To inform development of Marine Hydrokinetic (MHK) and Offshore Wind (OSW) resources, the Department of Energy (DOE) has asked NREL to identify the competing uses areas betwe...
Best, B. and Kilcher, L. National Renewable Energy Laboratory
Aug 29, 2019
3 Resources
0 Stars
Publicly accessible
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service