OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 1 - 25 of 138.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"flow simulator"×

Virtual Flow Solver Geophysics: A 3D Incompressible Navier-Stokes Solver

Virtual Flow Solver Geophysics (VFS-Geophysics) is a three-dimensional (3D) incompressible Navier-Stokes solver based on the Curvilinear Immersed Boundary (CURVIB) method. The CURVIB is a sharp interface type of immersed boundary (IB) method that enables the simulation of fluid f...
Khosronejad, A. et al Stony Brook University
Jul 17, 2023
2 Resources
0 Stars
Publicly accessible

TEAMER: Triton Systems Oscillating Water Column Modeling Data and Report

This dataset provides the output of six Wave Energy Converter Simulator (WEC-Sim) simulations and accompanying documentation for the modeling of Triton Systems' oscillating water column (OWC) system at tank scale (validated using available data for tuning the model, Tests 1-2) and...
Forbush, D. et al Sandia National Laboratories
Aug 30, 2024
3 Resources
0 Stars
Awaiting release

WEC-Sim Wave Energy Converter Simulator

WEC-Sim (Wave Energy Converter SIMulator) is an open-source wave energy converter (WEC) simulation tool. This repository includes: link to the WEC-Sim project website which includes, introductory and overview information about the WEC-Sim, WEC-Sim publications, release notes, li...
Lawson, M. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation

TEAMER: Wave Energy Converter SIMulator (WEC-SIM) Support for an Adaptive Wave Energy Converter by Ocean Motion Technologies

Scripts from project git repo + tutorial slide deck generated for the TEAMER RFTS 1 (request for technical support) collaborative project between Ocean Motion Technologies, Inc. and Sandia National Laboratories + National Renewable Energy Laboratory. The project simulates an adapt...
Keester, A. et al Ocean Motion Technologies, Inc.
Jan 29, 2021
3 Resources
0 Stars
Awaiting release

TEAMER: AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Sim Model

Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Tom, N. and Leon, J. AquaHarmonics, Inc.
Dec 31, 2021
6 Resources
0 Stars
Publicly accessible

Laboratory Upgrade Point Absorber WEC-Sim Model with MoorDyn Moorings

This dataset includes a WEC-Sim and MoorDyn model of the Laboratory Upgrade Point Absorber (LUPA). LUPA is an open-source wave energy converter designed and tested by Oregon State University. The files provided here constitute a stable LUPA configuration with three mooring lines. ...
Mcconnell, A. Oregon State University
Oct 08, 2024
2 Resources
0 Stars
Publicly accessible

TEAMER: WEC-Sim Modeling of Laminar Scientific Patented Seesaw Wave Energy Converter

Laminar Scientific's patented nearshore seesaw wave energy converter has several features assessed in this study utilizing the Wave Energy Converter SIMulator (WEC-Sim) Facility. One of these features is the ability to change spacing between two spherical floats of the seesaw to a...
Iyer, N. et al Laminar Scientific Inc.
Nov 21, 2024
2 Resources
0 Stars
Publicly accessible

MBARI-WEC September and October 2022 Field Data

This data is needed to simulate a model of the MBARI-WEC (Monterey Bay Aquarium Research Institute, Wave Energy Converter device) in a simulation environment (e.g. Gazebo) for 56 observation dates in the time between September and October 2022, and to compare the simulation output...
Dizon, C. et al Oregon State University
Sep 07, 2022
5 Resources
0 Stars
Publicly accessible

TEAMER AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Test Logs and Results

Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Hagmuller, A. et al AquaHarmonics, Inc.
Dec 16, 2021
9 Resources
0 Stars
Publicly accessible

TEAMER: Advanced Wave-to-Wire OWC model in WEC-Sim

Accurate numerical models are crucial for the development of wave energy converter (WEC) technologies, providing the means for power production and lifetime assessment, site selection, and design of mooring lines, PTO systems and controllers, among other aspects. This project aims...
PeƱalba, M. et al Mondragon Goi Eskola Politeknikoa
Dec 20, 2024
2 Resources
0 Stars
In curation

RivGen Current Flow Measurements, Igiugig, AK

Measurements of flow velocity, distribution and turbulence conducted by University of Washington Applied Physics Laboratory, Igiugig, Alaska, Summer 2014
Thomson, J. et al Ocean Renewable Power Company
Nov 03, 2014
1 Resources
0 Stars
Publicly accessible

TEAMER: Vertical Axis Hydrokinetic Turbine Array Modeling And Optimization Data

This dataset from Emrgy Inc., in collaboration with Sandia National Laboratories, includes integration of modular vertical axis hydrokinetic (HK) turbines into a higher fidelity canal hydraulic model. This submission contains all data collected and used for the Vertical Axis Hydro...
Cuthbert, T. Emrgy, Inc.
Jul 31, 2024
34 Resources
0 Stars
Curated

ORPC RivGen 2.0 at Igiugig, AK Operational Data 2019 and 2020

Information enclosed includes operational data from the ORPC RivGen 2.0 deployed at Igiugig, AK in 2019 and 2020. Flow velocities and device performance metrics are recorded along with a report detailing flow speed characterization where Igiugig river flow data is aggregated into ...
Tyler, R. ORPC Inc.
Apr 01, 2022
1 Resources
0 Stars
Awaiting release

Tidal Current Cross-flow Turbine Wake ADV and PIV Data

Measurements in the wake of a high-solidity cross-flow turbine in a laboratory flume obtained using Acoustic Doppler Velocimetry and Particle Image Velocimetry for the purposes of characterizing the turbine wake and comparing the methods.
Polagye, B. University of Washington
Dec 06, 2016
6 Resources
1 Stars
Publicly accessible

Current Energy Harnessing using Synergistic Kinematics of Schools of Fish-Shaped Bodies: Marine Hydrodynamics Laboratory Tank Testing Data

The objectives of the proposed work pertain to building a high power-density and high efficiency device to harness MHK energy by mimicking fish-school kinematics. Vortex Hydro Energy is collaborating with a concept formed and undergone preliminary testing at the University of Mich...
Bernitsas, M. Vortex Hydro Energy
Apr 11, 2017
20 Resources
0 Stars
Publicly accessible

Physical and Numerical Modeling Open Source Files and Datasets for 1:6 Scale Reference Model 2 (RM2) Cross-Flow Turbine

This submission includes Github links to open source files and data sets, including the numerical model, CACTUS, input files, source code and output files, CAD files of the 1:6 scale model DOE's RM2 cross-flow turbine, power performance data and wake flow measurements from the 1:6...
Neary, V. Sandia National Laboratories
Jun 30, 2015
3 Resources
0 Stars
Publicly accessible

TEAMER: Cross-flow Turbine Hydrodynamics

The objective of this work is to validate RANS and LES computations of cross-flow turbine hydrodynamics using laboratory scale measurements. Validation involves the comparison of time-and phase averaged performance metrics and flowfields across the widest practical range of turbin...
Athair, A. et al University of Washington (NNMREC)
Mar 25, 2025
7 Resources
0 Stars
Curated

TEAMER: Tidal Currents Turbine Parametric Study Flow, Power, Torque, and Energy Optimization

This is an exercise in optimizing the flow through a shrouded axial turbine to have the least resistance and to have optimal output and torque and energy. In this study, different variations of the original geometry of the current turbine designed by Hydrokinetic Energy Corp. (HEC...
Schurtenberger, W. and Ge, Z. Hydrokinetic Energy Corp.
Jul 30, 2021
3 Resources
0 Stars
Publicly accessible

Coordinated Control of Tidal Cross-flow Turbines

Initial laboratory experiments with coordinated phase control of cross-flow turbines in a dense array.
Polagye, B. University of Washington
Dec 06, 2016
5 Resources
0 Stars
Publicly accessible

RivGen Wake Data, Igiugig, AK

Turbulence data collected in from a SWIFT drifter repeatedly released over the ORPC RivGen turbine
Thomson, J. Northwest National Marine Renewable Energy Center
Jul 01, 2015
1 Resources
0 Stars
Publicly accessible

TEAMER: Experimental performance characterization of a shrouded axial-flow turbine

Sitkana has developed a shrouded hydrokinetic turbine with a modular, low-cost design that can be scaled to meet the needs of remote communities. With technical support from the University of Washington, Sitkana sought to experimentally characterize the mechanical power and struct...
McMullan, L. et al University of Washington
Oct 20, 2023
2 Resources
0 Stars
Publicly accessible

ORPC RivGen Hydrokinetic Turbine Wake Characterization

Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river ...
Thomson, J. and Guerra, M. University of Washington
Feb 27, 2018
4 Resources
0 Stars
Publicly accessible

Kvichak River RISEC Project Resource Reconnaissance and Physical Characterization, Igiugig, AK

During the summer and fall of 2011 TerraSond Ltd. (TerraSond) completed a bathymetric survey and hydrokinetic energy assessment of the Kvichak River at Igiugig, Alaska. The purpose of this work was to characterize the initial site conditions for the design and installation of a hy...
McEntee, J. Ocean Renewable Power Company
Oct 01, 2015
2 Resources
0 Stars
Publicly accessible

Performance data for an axial-flow turbine with passive adaptive blades

To support the development of simulation tools for passive adaptive turbine rotors, an experimental data set from a laboratory-scale axial-flow turbine with passive adaptive blades is provided. The 0.45-meter diameter turbine was tested in the Alice C. Tyler Flume at the Universit...
Van Ness, K. et al University of Washington
May 01, 2024
1 Resources
0 Stars
Publicly accessible

Optimal kite control in spatiotemporally varying flow fields ACC 2021

Two papers submitted (and accepted) to the 2021 American Control Conference (ACC), both focused on different attributes of kite control in variable flow environments. Siddiqui et. al. focuses on tether elevation angle control in a spatiotemporally varying environment, and Reed et....
Vermillion, C. et al North Carolina State University
Sep 14, 2020
2 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service