OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 1 - 16 of 16.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"foil"×

Design of high-deflection foils MHK applications FEA models Helical turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
2 Resources
0 Stars
Publicly accessible

TEAMER: ORPC Pitching Foil Crossflow Turbine Efficiency Testing Report

Turbine performance data, collected and processed by the University of New Hampshire (UNH). This presentation includes turbine performance vs tow speed and Reynolds #, turbine performance vs tip-speed ratio, as well as the TARE values used for processing the data. Project was fun...
Pillsbury, L. Ocean Renewable Power Company
Sep 01, 2022
1 Resources
0 Stars
Awaiting release

Aquantis 2.5 MW Ocean Current Generation Device MHK Hydrofoils Design, Wind Tunnel Optimization and CFD Analysis Report

Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.
Shiu, H. et al Dehlsen Associates, LLC
Jun 03, 2015
16 Resources
0 Stars
Publicly accessible

TidGen: Turbine Production Report

The report below provides a comprehensive overview of the production process for the first TidGen turbine. The turbine is composed of several key components, including carbon fiber foils, e-glass struts, and a steel shaft. The report covers the production of each of these elements...
Barrington, M. Ocean Renewable Power Company
Jan 30, 2023
1 Resources
0 Stars
Awaiting release

TEAMER: Pitching Foil Crossflow Turbine Efficiency Data

This dataset documents the efficiency testing of a pitching foil crossflow turbine, conducted at the University of New Hampshire's (UNH) Chase Ocean Engineering Laboratory tow tank facility. The tests explored various pitch phases and amplitudes, ranging from 0 to 18 degrees, acro...
McEntee, J. Ocean Renewable Power Company
Aug 07, 2024
2 Resources
0 Stars
Awaiting release

ORPC TidGen Turbine Foil Production Process Technical Report

This report aims to provide a comprehensive overview of the production process for the first TidGen turbine. The turbine is composed of several key components, including carbon fiber foils, e-glass struts, and a steel shaft. The report covers the production of each of these elemen...
Barrington, M. Ocean Renewable Power Company
Jan 30, 2023
1 Resources
0 Stars
Awaiting release

TEAMER: Cross-flow Turbine Hydrodynamics

The objective of this work is to validate RANS and LES computations of cross-flow turbine hydrodynamics using laboratory scale measurements. Validation involves the comparison of time-and phase averaged performance metrics and flowfields across the widest practical range of turbin...
Athair, A. et al University of Washington (NNMREC)
Mar 25, 2025
7 Resources
0 Stars
Curated

Design of high deflection foils for MHK applications CFD files

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Jun 01, 2021
5 Resources
0 Stars
Publicly accessible

Design of high-deflection foils MHK applications FEA models RivGen Turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 01, 2021
2 Resources
0 Stars
Awaiting release

Design of high-deflection foils MHK applications CFD models Helical turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Nov 01, 2021
2 Resources
0 Stars
Publicly accessible

Design of high-deflection foils MHK applications CFD models RivGen turbine

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 08, 2021
3 Resources
0 Stars
Awaiting release

In-Situ Blade Strain Measurements of a Crossflow Turbine Operating in a Tidal Flow

This data was collected between October 25 and December 12 of 2022 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). The goal was to collect blade strain data from a crossflow turbine operating in a tidal flow. A t...
Bharath, A. et al National Renewable Energy Laboratory
Dec 16, 2022
17 Resources
0 Stars
Publicly accessible

Design of High-Deflection Foils MHK Applications FEA models

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
3 Resources
0 Stars
Publicly accessible

Performance Data from a 1-Meter Cross-flow Turbine with High Deflection Hydrofoils

Performance data of a 1-meter diameter cross-flow tidal turbine consisting of three NACA 0018 blades with two support struts with high deflection hydrofoils. Data was collected at the University of New Hampshire Jere A. Chase Ocean Engineering Lab within the tow tank. Three turbin...
Marone, N. et al University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Jul 21, 2021
4 Resources
0 Stars
Publicly accessible

Lift Equivalence and Cancellation for Airfoil Surge-Pitch-Plunge Oscillations

A NACA 0018 airfoil in freestream velocity is oscillated in longitudinal, transverse, and angle-of-attack directions with respect to the freestream velocity, known as surge, plunge, and pitch. The lift-based equivalence method introduces phase shifts between these three motions to...
Elfering, K. and Granlund, K. North Carolina State University
Jan 01, 2020
1 Resources
0 Stars
Publicly accessible

UNH TDP Concurrent Measurements of Inflow, Power Performance, and Loads for a Grid-Synchronized Vertical Axis Cross-Flow Turbine Operating in a Tidal Estuary

This data was collected between October 12 and December 15 of 2021 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). This data set includes over 29 days of grid connected turbine operation during this 65 day time f...
Wosnik, M. et al National Renewable Energy Laboratory
Dec 21, 2021
30 Resources
0 Stars
Publicly accessible
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service