Search MHK Data
Showing results 1 - 25 of 335.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
RANS Simulation VBM of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CF...
Javaherchi, T. University of Washington
Jun 08, 2016
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Model and experimental validation of ocean kite dynamics and controls
This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission.
...
Vermillion, C. et al North Carolina State University
Mar 01, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same po...
Javaherchi, T. et al University of Washington (NNMREC)
Apr 15, 2014
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Advanced TidGen Power System OpenFOAM Version 5 CFD Case Files
The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
AeroDyn V15.04: Design Tool for Wind and MHK Turbines
AeroDyn is a time-domain wind and MHK turbine aerodynamics module that can be coupled into the FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal-axis wind turbines. AeroDyn V15.04 has been updated to include a cavitation check for MHK tu...
Murray, R. et al National Renewable Energy Laboratory
Apr 28, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Full Scale DOE RM1 MHK Turbine
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this...
Javaherchi, T. and Aliseda, A. University of Washington
Apr 10, 2013
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
TEAMER: Electrically Engaged Undulation (EEL) System
The Electrically Engaged UnduLation (EEL) system is a buoyancy-driven submersible device for powering oceanographic instruments. Physically, EEL is a slender body whose flexible spine is made up of energy units interconnected by uniaxial hinges. Each unit consists of a pair of pie...
Lu, K. Pyro-E
Dec 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Electrically Engaged Undulation System for Unmanned Underwater Vehicles
This TEAMER RFTS 1 (Request for Technical Support) project supported the flume tank testing of a long range, high endurance unmanned underwater vehicle (UUV) to monitor maritime space. Today, battery-powered remotely operated vehicles (ROVs) lack the duration to make persistent, w...
Lu, K. and Datla, R. Pyro-E
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Lift Equivalence and Cancellation for Airfoil Surge-Pitch-Plunge Oscillations
A NACA 0018 airfoil in freestream velocity is oscillated in longitudinal, transverse, and angle-of-attack directions with respect to the freestream velocity, known as surge, plunge, and pitch. The lift-based equivalence method introduces phase shifts between these three motions to...
Elfering, K. and Granlund, K. North Carolina State University
Jan 01, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Aquantis 2.5 MW Ocean Current Generation Device MHK Hydrofoils Design, Wind Tunnel Optimization and CFD Analysis Report
Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.
Shiu, H. et al Dehlsen Associates, LLC
Jun 03, 2015
16 Resources
0 Stars
Publicly accessible
16 Resources
0 Stars
Publicly accessible
Physical and Numerical Modeling Open Source Files and Datasets for 1:6 Scale Reference Model 2 (RM2) Cross-Flow Turbine
This submission includes Github links to open source files and data sets, including the numerical model, CACTUS, input files, source code and output files, CAD files of the 1:6 scale model DOE's RM2 cross-flow turbine, power performance data and wake flow measurements from the 1:6...
Neary, V. Sandia National Laboratories
Jun 30, 2015
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
TEAMER: Water Tunnel Data from Testing the Pterofin Skimmer Concept
Pterofin's Skimmer concept relies on a flapping and pitching hydrofoil to extract hydrokinetic energy from water flows. The concept aims to utilize unsteady fluid dynamics phenomena (added mass, shed vorticity, and unsteady boundary layer development) to achieve higher lift coeffi...
Jaffa, N. et al Pennsylvania State University, Applied Research Laboratory
Jul 13, 2023
7 Resources
1 Stars
Publicly accessible
7 Resources
1 Stars
Publicly accessible
TEAMER: FOSWEC Mooring Modelling and Analysis, Post Access Report and Data
Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
13 Resources
0 Stars
Curated
13 Resources
0 Stars
Curated
Current Energy Harnessing using Synergistic Kinematics of Schools of Fish-Shaped Bodies: Marine Hydrodynamics Laboratory Tank Testing Data
The objectives of the proposed work pertain to building a high power-density and high efficiency device to harness MHK energy by mimicking fish-school kinematics. Vortex Hydro Energy is collaborating with a concept formed and undergone preliminary testing at the University of Mich...
Bernitsas, M. Vortex Hydro Energy
Apr 11, 2017
20 Resources
0 Stars
Publicly accessible
20 Resources
0 Stars
Publicly accessible
TEAMER: MADWEC Techno-Economic Analysis
The objective of this project was for the facility to conduct a techno-economic assessment (TEA) of the Maximal Asymmetric Drag Wave Energy Converter (MADWEC), developed by the University of Massachusetts Dartmouth (UMass Dartmouth). MADWEC is used for powering remote monitoring a...
Ortega, T. and Baca, E. National Renewable Energy Laboratory
Mar 08, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
Design of high deflection foils for MHK applications CFD files
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Jun 01, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
TEAMER: Maximal Asymmetric Drag Wave Energy Converter
Boundary element method (BEM) and WEC-Sim analysis of UMass Dartmouth's maximal asymmetric drag wave energy converter (MADWEC), including its tethered ballast system and PTO (power take-off).
This project is part of the TEAMER RFTS 6 (request for technical support) program.
MacDonald, D. et al University of Massachusetts Dartmouth
Aug 18, 2023
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
ALFA Coupled Computational Fluid Dynamics/Discrete Element Method Modeling System
The HDIS/COUPi discrete element method modeling system was used to simulate the interaction between various debris and the Research Debris Diversion Platform (RDDP)
DUVOY, P. University of Alaska Fairbanks
Nov 29, 2016
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Design of high-deflection foils MHK applications CFD models Helical turbines
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Nov 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Design of high-deflection foils MHK applications CFD models RivGen turbine
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 08, 2021
3 Resources
0 Stars
Awaiting release
3 Resources
0 Stars
Awaiting release
TEAMER: Pitching Foil Crossflow Turbine Efficiency Data
This dataset documents the efficiency testing of a pitching foil crossflow turbine, conducted at the University of New Hampshire's (UNH) Chase Ocean Engineering Laboratory tow tank facility. The tests explored various pitch phases and amplitudes, ranging from 0 to 18 degrees, acro...
McEntee, J. Ocean Renewable Power Company
Aug 07, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Specified System Requirements for the HydroAir Power Take Off System
Includes Annual Energy Production of the system, Target Availability of the system, the system's PWR (power to weight ratio), Critical Dimensions and Weights (e.g. center of gravity and center of buoyancy, capture length) of the system, the system's Noise Levels, and All Grid Requ...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Stage 2 Sub-Scale Magnetic Gear
The goal of this project is to design, fabricate, and test a hermetically sealed 50 kilowatt (kW) multistage magnetically geared generator (MGG). In
order to reduce risk, a sub-scale 5kW multistage MGG was first built. This project will benefit MHK device developers by providing a...
Bird, J. Portland State University
May 30, 2021
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
Coordinated Control of Tidal Cross-flow Turbines
Initial laboratory experiments with coordinated phase control of cross-flow turbines in a dense array.
Polagye, B. University of Washington
Dec 06, 2016
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Design of high-deflection foils MHK applications FEA models Helical turbines
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible