Triton: Survivability Enhancement of a Multi-Mode Point Absorber

Awaiting release License 

The overall goal of this project was to design and validate a survival mode for the Triton WEC that allows for a reduction in peak loads, while simultaneously allowing for a reduction of capital cost due to the elimination of overdesign to account for uncertainty. In addition, the project sought to carefully understand performance of the design without survival mode engaged under extreme wave conditions so as to better understand how system loads vary and hence determine conditions where survival mode needs to be engaged, thereby allowing for an optimum balance between maximum power capture and acceptable risk within the capabilities of the design.

Citation Formats

Oscilla Power, Inc.. (2018). Triton: Survivability Enhancement of a Multi-Mode Point Absorber [data set]. Retrieved from https://dx.doi.org/10.15473/1513778.
Export Citation to RIS
Mundon, Tim, Rosenberg, Brian. Triton: Survivability Enhancement of a Multi-Mode Point Absorber. United States: N.p., 28 Sep, 2018. Web. doi: 10.15473/1513778.
Mundon, Tim, Rosenberg, Brian. Triton: Survivability Enhancement of a Multi-Mode Point Absorber. United States. https://dx.doi.org/10.15473/1513778
Mundon, Tim, Rosenberg, Brian. 2018. "Triton: Survivability Enhancement of a Multi-Mode Point Absorber". United States. https://dx.doi.org/10.15473/1513778. https://mhkdr.openei.org/submissions/303.
@div{oedi_303, title = {Triton: Survivability Enhancement of a Multi-Mode Point Absorber}, author = {Mundon, Tim, Rosenberg, Brian.}, abstractNote = {The overall goal of this project was to design and validate a survival mode for the Triton WEC that allows for a reduction in peak loads, while simultaneously allowing for a reduction of capital cost due to the elimination of overdesign to account for uncertainty. In addition, the project sought to carefully understand performance of the design without survival mode engaged under extreme wave conditions so as to better understand how system loads vary and hence determine conditions where survival mode needs to be engaged, thereby allowing for an optimum balance between maximum power capture and acceptable risk within the capabilities of the design.
}, doi = {10.15473/1513778}, url = {https://mhkdr.openei.org/submissions/303}, journal = {}, number = , volume = , place = {United States}, year = {2018}, month = {09}}
https://dx.doi.org/10.15473/1513778

Details

Data from Sep 28, 2018

Last updated Jun 3, 2020

Submitted Oct 1, 2018

Organization

Oscilla Power, Inc.

Contact

Tim Mundon

206.557.7032

Authors

Tim Mundon

Oscilla Power Inc.

Brian Rosenberg

Oscilla Power Inc.

DOE Project Details

Project Name DE-FOA-0001310: Next Generation Marine Energy Systems - Durability & Survivability

Project Lead William McShane

Project Number EE0007346

Share

Submission Downloads