OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 26 - 50 of 113.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"two-body multi-mode point absorber"×
Document×

TEAMER Extreme Events Modeling for the MARMOK-OWC Wave Energy Converter

Through the TEAMER program, Sandia National Laboratories (SNL) collaborated with IDOM Incorporated to study their MARMOK-Oscillating Water Column (MARMOK-OWC) wave energy conversion device. The study yielded a quantitative understanding of hydrodynamic pressures on the oscillating...
De Miguel Para, B. et al IDOM Incorporated
Dec 27, 2024
2 Resources
0 Stars
Publicly accessible

TigerRAY Drifting Tests and Wave Data Lake Washington and Puget Sound, February 2023

This dataset contains measurements from drifting deployments of the TigerRAY, a two-body wave energy converter, and four SWIFT buoys on Lake Washington and Puget Sound during February 2023. Tests were conducted under varying wave conditions, including natural waves, calm condition...
Rusch, C. et al University of Washington Applied Physics Lab
Apr 30, 2025
5 Resources
0 Stars
Curated

TEAMER: xWave Real Time IMU Optimization for Advanced Controls

CalWave is developing a wave energy converter (WEC) called xWave that operates fully submerged and is classified as a type of submerged pressure differential WEC. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multipl...
Spinneken, J. and Boerner, T. CalWave Power Technologies Inc.
Apr 18, 2023
2 Resources
0 Stars
Awaiting release

Admiralty Inlet Advanced Turbulence Measurements: May 2015

This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). Thes...
Kilcher, L. National Renewable Energy Laboratory
May 18, 2015
18 Resources
0 Stars
Publicly accessible

TEAMER: A Tow Body Optical Camera System

Archive consists of design drawings, assembly instructions, and bill of materials (BOM) for a Igiugig Village Council (IVC)/Ocean Renewable Power company (ORPC) tow body camera system for underwater environmental monitoring using optical cameras. This work was conducted by the Uni...
Joslin, J. et al University of Washington
Apr 30, 2021
6 Resources
1 Stars
Publicly accessible

CalWave Tank Testing Lir Deep Ocean Basin

Experimental tank testing report for CalWave's 1:20 & 1:30 scale prototype testing at the Lir National Ocean Test Facility in Ireland. Testing was completed in January 2018. Test report includes description of the scaled prototype, primary testing objectives, instrumentation and b...
Boerner, T. CalWave Power Technologies Inc.
Jan 15, 2018
1 Resources
0 Stars
Publicly accessible

TEAMER: CalWave xWave New Technology Qualification and Path to Certification Final Report

CalWave is developing a wave energy converter (WEC) called xWave, which operates fully submerged and is classified as a submerged pressure differential type. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multiple deg...
Petcovic, D. and Zhang, S. CalWave Power Technologies Inc.
Oct 31, 2022
2 Resources
0 Stars
Publicly accessible

CalWave xWave Device, Non-Commercially Sensitive Project Report

CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Lehmann, M. and Davidson, R. CalWave Power Technologies Inc.
Feb 29, 2024
1 Resources
0 Stars
Publicly accessible

Wave Carpet Controls Design Optimization

To assess CalWave's submerged Wave Carpet Technology for system performance advancement, CalWave seeks to test advanced controls methodologies on a simplified wave carpet model, which potentially can be used in further research to leverage the design to a full wave carpet assessme...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Awaiting release

Advanced Control Systems for Wave Energy Converters

This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture eff...
Scruggs, J. et al Resolute Marine Energy, Inc.
Jan 30, 2017
4 Resources
0 Stars
Publicly accessible

NWEI Azura RTI 1/20th Model Validation Wave Tank Test Data

Data from the 1/20th wave tank test of the RTI model. Northwest Energy Innovations (NWEI) has licensed intellectual property from RTI, and modified the PTO and retested the 1/20th RTI model that was tested as part of the Wave Energy Prize. The goal of the test was to validate NWEI...
Ling, B. and Lettenmaier, T. Northwest Energy Innovations
May 08, 2017
7 Resources
0 Stars
Publicly accessible

TEAMER: Additional Degree of Freedom for WEC Model

'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Awaiting release

H3 StingRAY Final Design and Technical Report

The goal of this Project was to develop a standards-compliant, fabrication-ready design of Columbia Power Technologies' (C-Power) next-generation wave energy converter (WEC), the StingRAY H3. The H3 is a design iteration of C-Power's StingRAY WEC and is intended for electrical pow...
Prudell, J. and Lenee-Bluhm, P. Columbia Power Technologies, Inc.
Sep 15, 2023
2 Resources
0 Stars
Publicly accessible

Wave Tank Testing Report for Controls Validation of a Heaving Point Absorber

The core objectives of this project is to improve the power capture of three different wave energy conversion (WEC) devices by more than 50% using an advanced control system and validate the attained improvements using wave tank and full scale testing. In parallel, we will bring a...
Previsic, M. et al Re Vision Consulting
Aug 26, 2020
3 Resources
0 Stars
Publicly accessible

TEAMER: Advanced Wave-to-Wire OWC model in WEC-Sim

Accurate numerical models are crucial for the development of wave energy converter (WEC) technologies, providing the means for power production and lifetime assessment, site selection, and design of mooring lines, PTO systems and controllers, among other aspects. This project aims...
PeƱalba, M. et al Mondragon Goi Eskola Politeknikoa
Dec 20, 2024
2 Resources
0 Stars
In curation

CalWave Device Behavior in Different Sea States from Scaled Tank Testing

This submission contains a summary of tank test derived WEC device behavior in different irregular sea states. CalWave sought to conduct experimental tank testing of scaled prototype units early on in the design process to obtain a first estimation of device performance for sea ...
Boerner, T. and Murray, B. CalWave Power Technologies Inc.
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible

Current Energy Harnessing using Synergistic Kinematics of Schools of Fish-Shaped Bodies: Marine Hydrodynamics Laboratory Tank Testing Data

The objectives of the proposed work pertain to building a high power-density and high efficiency device to harness MHK energy by mimicking fish-school kinematics. Vortex Hydro Energy is collaborating with a concept formed and undergone preliminary testing at the University of Mich...
Bernitsas, M. Vortex Hydro Energy
Apr 11, 2017
20 Resources
0 Stars
Publicly accessible

Aquantis 2.5 MW Ocean Current Generation Device Scaled Tank Test Design and Results

Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This datase...
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
46 Resources
0 Stars
Publicly accessible

Wave Tank Testing of 1-DoF Heaving Buoy for Controls Validation Purposes

This submission includes the wave tank testing data used to validate the controls optimization efforts of a heaving 1-DoF buoy.
Previsic, M. et al Re Vision Consulting
Jul 13, 2017
4 Resources
0 Stars
Publicly accessible

TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System

Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Awaiting release

Tank testing of Waveberg wave energy converter

Waveberg tank test data guide: The files are in alphabetical order after the first sub file; this file contains earlier versions of the master analysis file. As I was working, I would take a graph and drop it into the draft final report, since I did not understand the data tracea...
Wegener, P. DBA Waveberg Development
Apr 20, 2025
27 Resources
0 Stars
In curation

MOIS Installation on NWEI Azura Half Scale WEC WETS Testing Documentation

This submission includes documentation on the Modular Ocean Instrumentation System (MOIS) installation on the Azura 1/2 scale wave energy converter at the Marine Station Kaneohe Bay (MCBH). Data from the deployment will be uploaded over the course of the test. The instrumentatio...
Nelson, E. National Renewable Energy Laboratory
May 30, 2015
7 Resources
0 Stars
Publicly accessible

H3 StingRAY Final Design and Technical Report Section 13 Appendices

These documents are referenced in the public version of the H3 StingRAY Final Design and Technical Report (Linked Dataset can be found in Resources section, below), and are submitted separately to allow for public release of head document. The display names have the corresponding ...
Lenee-Bluhm, P. and Prudell, J. Columbia Power Technologies, Inc.
Sep 15, 2023
53 Resources
0 Stars
Awaiting release

SeaRAY WEC Preliminary Design and Test Planning

The SeaRAY is a deployable power system for maritime sensors, monitoring equipment, communications, unmanned underwater vehicles, and other similar payloads. This project is to design, deliver, and test a prototype low-power WEC that lowers the total cost of ownership and provides...
Hammagren, E. et al Columbia Power Technologies, Inc.
May 18, 2020
4 Resources
0 Stars
Awaiting release

Model and experimental validation of ocean kite dynamics and controls

This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission. ...
Vermillion, C. et al North Carolina State University
Mar 01, 2020
2 Resources
0 Stars
Publicly accessible
<< Previous12345Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service