Search MHK Data
Showing results 1 - 25 of 103.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
RANS Simulation RRF of Single Full Scale DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry i...
Javaherchi, T. et al University of Washington
Apr 10, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same po...
Javaherchi, T. et al University of Washington (NNMREC)
Apr 15, 2014
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Full Scale DOE RM1 MHK Turbine
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this...
Javaherchi, T. and Aliseda, A. University of Washington
Apr 10, 2013
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
RANS Simulation ADM of the NREL Phase VI wind turbine modeled as MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MH...
Javaherchi, T. University of Washington
Jun 08, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CF...
Javaherchi, T. University of Washington
Jun 08, 2016
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology
The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible
24 Resources
0 Stars
Publicly accessible
Wave Carpet Controls Design Optimization
To assess CalWave's submerged Wave Carpet Technology for system performance advancement,
CalWave seeks to test advanced controls methodologies on a simplified wave carpet model, which
potentially can be used in further research to leverage the design to a full wave carpet assessme...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Single Turbine Test Procedure and Data Acquisition Plan, Rev. B
The TidGen80 Single Turbine System (TD80-STS or STS) will be used to test the power production performance of a single turbine in a tidal environment. Installation of the STS will also test the deployment system and methods for the full scale TD80. This document describes the te...
Hayes, N. ORPC Inc.
Apr 13, 2022
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System
Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Single Turbine Test Procedure and Data Acquisition Plan
This document describes the test procedure and the data acquisition plan for the Single Turbine Subsystem (STS) testing that is part of the Advanced TidGen Power System. The goal of the Advanced TidGen Power System is to demonstrate a commercially viable tidal power system, integr...
Hayes, N. ORPC Inc.
Apr 13, 2022
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TidGen: Single Turbine Test Procedure and Data Acquisition Plan
The included report details the procedure for conducting a performance test of a single turbine for the Advanced TidGen system. The TidGen80 Single Turbine System (TD80-STS or STS) will be used to test the power production performance of a single turbine in a tidal environment. In...
Hayes, N. Ocean Renewable Power Company
Jun 03, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TEAMER: AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Sim Model
Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Tom, N. and Leon, J. AquaHarmonics, Inc.
Dec 31, 2021
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
TidGen: Single Turbine System (STS) Deployment and Mooring Report
This document provides a summary for the performance of the deployment and mooring systems for a single turbine test system (STS) deployed by the Ocean Renewable Power Company (ORPC) in Cobscook Bay, Maine in 2023.
Pillsbury, L. Ocean Renewable Power Company
Jan 05, 2024
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TidGen: Permits for Installation of Single Turbine Test System, Cobscook Bay, Maine
This is a summary of permits required and obtained for installation, operation, removal of the TidGen Single Turbine Test system in Cobscook Bay, May in 2023. The Ocean Renewable Power Company (ORPC) worked with federal and state entities to gain required permits and approvals tha...
Sellers-Reynolds, K. Ocean Renewable Power Company
Feb 27, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TidGen: Single Turbine System Mooring Design Overview for Cobscook Bay, Maine
This document summarizes the design of the Single Turbine Subsystem (STS) 2-point mooring system in Cobscook Bay, ME. The TidGen80 (TD80) is a mid-water column tidal energy device being developed by ORPC. Initial testing will utilize a previously installed Bottom Support Frame (BS...
Scott, M. Ocean Renewable Power Company
Oct 19, 2022
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TidGen: Single Turbine System Performance Analysis
This document offers a detailed performance analysis of the Single Turbine System (STS) developed by ORPC in Cobscook Bay, Maine, in 2023. The report includes system descriptions, deployment, and planned instrumentation, alongside data collection strategies. The performance evalua...
McEntee, J. Ocean Renewable Power Company
Jan 11, 2024
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TidGen: Single Turbine Subsystem (STS) Device Installation, Deployment, Retrieval, and Removal Procedures
This document provides the process details for installation of the Single Turbine Subsystem (STS) device from the assembly laydown location to the deployed location in Eastport, ME. These procedures will be conducted not only during initial deployment, but also during maintenance ...
Martin, T. Ocean Renewable Power Company
Feb 20, 2023
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Aquantis 2.5 MW Ocean Current Generation Device Tow Tank Dynamic Test Rig Drawings and Bill of Materials
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
CalWave Reports and Plans for xWave Device Demonstration at PacWave South Site
CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Boerner, T. et al CalWave Power Technologies Inc.
Feb 29, 2024
6 Resources
0 Stars
Awaiting release
6 Resources
0 Stars
Awaiting release
Timeseries Data from the Experimental Testing of the OPI's Prototype Hydraulic Drivetrain.
Timeseries data from the experimental testing of the OPI's prototype hydraulic drivetrain. The data is provided in .mat file format. The units for the data can be found in the ReadMe included in the submission resources.
Mundon, T. Oscilla Power, Inc.
Nov 26, 2021
4 Resources
0 Stars
Awaiting release
4 Resources
0 Stars
Awaiting release
CalWave xWave Device, Non-Commercially Sensitive Project Report
CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Lehmann, M. and Davidson, R. CalWave Power Technologies Inc.
Feb 29, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
In-Situ Blade Strain Measurements of a Crossflow Turbine Operating in a Tidal Flow
This data was collected between October 25 and December 12 of 2022 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). The priority of this measurement campaign was to collect blade strain data from a crossflow turbi...
Bharath, A. et al National Renewable Energy Laboratory
Dec 16, 2022
15 Resources
0 Stars
In curation
15 Resources
0 Stars
In curation
National Marine Renewable Energy Center Upgrades LUPA
The data provided is part of a power take off damping optimization study. The power take off damping coefficient was swept from 0 to approximately 7000 N/m/s during a single regular wave test with a real time control of the motor/generator. The generated power from the LUPA (Lab U...
Robertson, B. et al Oregon State University
Oct 12, 2022
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
HERO WEC 2024 Hydraulic Configuration Deployment Data
The following submission includes raw and processed data from the in water deployment of NREL's Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), in the form of parquet files, TDMS files, CSV files, bag files and MATLAB workspaces. This dataset was collected...
Jenne, S. et al National Renewable Energy Laboratory
Mar 14, 2024
9 Resources
0 Stars
In curation
9 Resources
0 Stars
In curation
TEAMER: Pitching Foil Crossflow Turbine Efficiency Data
This dataset documents the efficiency testing of a pitching foil crossflow turbine, conducted at the University of New Hampshire's (UNH) Chase Ocean Engineering Laboratory tow tank facility. The tests explored various pitch phases and amplitudes, ranging from 0 to 18 degrees, acro...
McEntee, J. Ocean Renewable Power Company
Aug 07, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated