Search MHK Data
Showing results 1 - 13 of 13.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
TEAMER: CalWave UMaine 2021 Tank Testing
This is the data submission to the teamer report for RFTS 1 (request for technical support) during which tank testing at UMaine W2 tank occurred. This submission includes the relevant information and recorded data of CalWave's UMaine wave tank testing conducted under TEAMER Reques...
Boerner, T. CalWave Power Technologies Inc.
Apr 01, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TEAMER: Additional Degree of Freedom for WEC Model
'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Sim Model
Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Tom, N. and Leon, J. AquaHarmonics, Inc.
Dec 31, 2021
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
TEAMER AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Test Logs and Results
Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Hagmuller, A. et al AquaHarmonics, Inc.
Dec 16, 2021
9 Resources
0 Stars
Curated
9 Resources
0 Stars
Curated
TEAMER: FOSWEC Mooring Modeling and Analysis, Post Access Report and Data
Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
10 Resources
0 Stars
Curated
10 Resources
0 Stars
Curated
TEAMER: Sandia and CalWave Torque Spring Assessment
Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type ...
Boerner, T. et al CalWave Power Technologies Inc.
Apr 01, 2022
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
TEAMER: Numerical Model of IProTech PIP WEC Device
iProTech PIP wave energy converter (WEC) is a slack moored, single hull device with no moving parts in the water, joints or bearings. This submission includes data of the simulation, reports, and code for the iProTech PIP (WEC) project. The organization of the data included in the...
Ogden, D. et al IProTech
Nov 02, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Original HANNA Mono-Radial Turbine Post Access Report
Final report on a TEAMER RFTS 2 (request for technical support) study undertaken by Alden Research Laboratory for the Mono-radial turbine invented by John Clark Hanna DBA: Hanna Wave Energy Primary Drives. The study is a predictive numerical and CFD (computational fluid dynamics) ...
Hanna, J. Hanna Wave Energy Primary Drives
Mar 10, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER: xWave Real Time IMU Optimization for Advanced Controls
CalWave is developing a wave energy converter (WEC) called xWave that operates fully submerged and is classified as a type of submerged pressure differential WEC. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multipl...
Spinneken, J. and Boerner, T. CalWave Power Technologies Inc.
Apr 18, 2023
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
UMass 2-Body WEC Techno-Economic Assessment
The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: CalWave xWave New Technology Qualification and Path to Certification Final Report
CalWave is developing a wave energy converter (WEC) called xWave, which operates fully submerged and is classified as a submerged pressure differential type. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multiple deg...
Petcovic, D. and Zhang, S. CalWave Power Technologies Inc.
Oct 31, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: Maximal Asymmetric Drag Wave Energy Converter
Boundary element method (BEM) and WEC-Sim analysis of UMass Dartmouth's maximal asymmetric drag wave energy converter (MADWEC), including its tethered ballast system and PTO (power take-off).
This project is part of the TEAMER RFTS 6 (request for technical support) program.
MacDonald, D. et al University of Massachusetts Dartmouth
Aug 18, 2023
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System
Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated