OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 51 - 75 of 95.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"design load"×
Technology×

Advanced TidGen Power System Summary Presentation

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
May 10, 2018
1 Resources
0 Stars
Publicly accessible

CalWave xWave Device, Non-Commercially Sensitive Project Report

CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Lehmann, M. and Davidson, R. CalWave Power Technologies Inc.
Feb 29, 2024
1 Resources
0 Stars
Publicly accessible

Laboratory Upgrade Point Absorber (LUPA) CAD Files

The Laboratory Upgrade Point Absorber (LUPA) is an open-source wave energy converter designed and tested by Oregon State University. The computer-aided design (CAD) files are provided here in two forms: the original SOLIDWORKS (2021) model as "LUPA SOLIDWORKS.zip" and as a STEP fi...
Beringer, C. et al Oregon State University
Nov 04, 2024
7 Resources
0 Stars
Publicly accessible

Reference Model 2 Scaled Geometry (RM2: River Current Turbine)

Contains the Reference Model 2 (RM2) scaled scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM2 devic...
Neary, V. and Hill, C. Sandia National Laboratories
Sep 30, 2014
5 Resources
0 Stars
Publicly accessible

RANS Simulation RRF of Single Lab-Scaled DOE RM1 MHK Turbine

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same p...
Javaherchi, T. et al University of Washington
Apr 15, 2014
3 Resources
0 Stars
Publicly accessible

Centipod WEC, Advanced Controls, Final Technical Report

Final Technical Report for "Advanced Controls for the Multi-pod Centipod WEC device" describing project parameters, organization, task activities, accomplishments, and conclusions. See other submissions under this DOE project for economic viability, design geometry, and modeling.
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
1 Resources
0 Stars
Publicly accessible

Reference Model 1 Scaled Geometry (RM1: Tidal Current Turbine)

Contains the Reference Model 1 (RM1) scaled scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM1 devic...
Neary, V. and Hill, C. Sandia National Laboratories
Sep 30, 2014
8 Resources
0 Stars
Publicly accessible

M3 Wave DMP/APEX WEC Numerical Survivability Report Baseline Geometry

Summary of numerical survivability modeling method for the baseline geometry of the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX."
Roberts, J. et al M3 Wave
Aug 16, 2016
2 Resources
0 Stars
Publicly accessible

CalWave Reports and Plans for xWave Device Demonstration at PacWave South Site

CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Boerner, T. et al CalWave Power Technologies Inc.
Feb 29, 2024
6 Resources
0 Stars
Awaiting release

RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK Turbine

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same po...
Javaherchi, T. et al University of Washington (NNMREC)
Apr 15, 2014
8 Resources
0 Stars
Publicly accessible

Reference Model 1 Cost Breakdown (RM1: Tidal Current Turbine)

Contains the Reference Model 1 (RM1) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM1 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible

TEAMER: FOSWEC Mooring Modeling and Analysis, Post Access Report and Data

Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
10 Resources
0 Stars
Publicly accessible

RANS Simulation VBM of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing

Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CF...
Javaherchi, T. University of Washington
Jun 08, 2016
9 Resources
0 Stars
Publicly accessible

M3 Wave DMP/APEX WEC Next Generation Concept Drawings

This is the preliminary concepts that formed the basis of the first round of numerical modeling and technical discussions for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX." IGES wireframes will be uploaded also. Additional hybrid concepts ...
Morrow, M. M3 Wave
Sep 21, 2016
1 Resources
0 Stars
Publicly accessible

Water Horse Hydroelectric Harvester Single Oscillator Field Testing Data, UAF Nenana Alaska, 2020

Raw and processed timeseries data generated during field testing of a single oscillating hydrofoil Water Horse prototype at PMEC (Pacific Marine Energy Center) Tanana River Test Site in Nenana, AK in July 2020. Data collection by University of Alaska, Fairbanks.
Loeffler, B. et al University of Alaska Fairbanks
Jul 10, 2020
1 Resources
0 Stars
In curation

Centipod WEC, Advanced Controls, WEC Geometry CAD

CAD files depicting the wetted geometry of the Centipod WEC used in numerical models during this project. This includes the wetted geometry of the point absorber body ('pod') and the WEC 'backbone'.
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
3 Resources
0 Stars
Publicly accessible

RM3 Wave Tank Validation Model

An approximately 1/75th scale point absorber wave energy absorber was built to validate the testing systems of a 16k gallon single paddle wave tank. The model was build based on the RM3 design and incorporated a linear position sensor, a force transducer, and wetness detection sen...
Candon, C. and Fao, R. National Renewable Energy Laboratory
Jul 31, 2023
3 Resources
0 Stars
Publicly accessible

CalWave Open Water Demonstration Field Testing Content Models (10/21 7/22)

Data for the CalWave Open Water Demonstration, a submerged pressure differential Wave Energy Converter (WEC) Device. Device is moored to the seabed, and the motion of the waves causes the sea level to rise and fall above the device, inducing a pressure differential in the device. ...
Boerner, T. et al CalWave Power Technologies Inc.
Jul 31, 2022
10 Resources
0 Stars
Awaiting release

StingRAY Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficient...
Rhinefrank, K. Columbia Power Technologies, Inc.
Jul 25, 2016
18 Resources
0 Stars
Publicly accessible

TEAMER: Initial Testing of Wave Energy-Powered UV-C LED Anti-Biofouling System, Post-Access Report, 3newable LLC

Biofouling severely limits the quality of data coming from buoy-mounted sensors. 3newable is co-developing a unique solution to the biofouling problem together with the Ocean Observatories Initiative (OOI) at WHOI to design and build a buoy-mounted WEC as an integrated power sourc...
Minsky, M. et al 3newable LLC
Sep 20, 2022
2 Resources
0 Stars
Publicly accessible

Centipod WEC, Advanced Controls, Quarterly Technical Report

Quarterly Technical Report for "Advanced Controls for the Multi-pod Centipod WEC device" describing project parameters, organization, task activities, accomplishments, and conclusions. See other submissions under this DOE project for economic viability, design geometry, and modeli...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
2 Resources
0 Stars
Publicly accessible

Hawaii Wave Surge Energy Converter (HAWSEC) OSU O.H. Hinsdale Basin

The following information and metadata applies to both the Phase I (Hydrodynamics) and Phase II (Full System Power Take-Off) zip folders which contain testing data from the OSU (Oregon State University) O.H. Hinsdale Wave Research Laboratory, from both OSU and the University of Ha...
Rajagopalan, K. et al University of Hawaii at Manoa
Jun 22, 2022
3 Resources
0 Stars
Awaiting release

TEAMER: Experimental performance characterization of a shrouded axial-flow turbine

Sitkana has developed a shrouded hydrokinetic turbine with a modular, low-cost design that can be scaled to meet the needs of remote communities. With technical support from the University of Washington, Sitkana sought to experimentally characterize the mechanical power and struct...
McMullan, L. et al University of Washington
Oct 20, 2023
2 Resources
0 Stars
Publicly accessible

TEAMER: Water Tunnel Data from Testing the Pterofin Skimmer Concept

Pterofin's Skimmer concept relies on a flapping and pitching hydrofoil to extract hydrokinetic energy from water flows. The concept aims to utilize unsteady fluid dynamics phenomena (added mass, shed vorticity, and unsteady boundary layer development) to achieve higher lift coeffi...
Jaffa, N. et al Pennsylvania State University, Applied Research Laboratory
Jul 13, 2023
7 Resources
1 Stars
Publicly accessible

TEAMER: Tidal Currents Turbine Parametric Study Flow, Power, Torque, and Energy Optimization

This is an exercise in optimizing the flow through a shrouded axial turbine to have the least resistance and to have optimal output and torque and energy. In this study, different variations of the original geometry of the current turbine designed by Hydrokinetic Energy Corp. (HEC...
Schurtenberger, W. and Ge, Z. Hydrokinetic Energy Corp.
Jul 30, 2021
3 Resources
0 Stars
Publicly accessible
<< Previous1234Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service