OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 51 - 75 of 330.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"system content model"×

TEAMER: Triton Systems Oscillating Water Column Modeling Data and Report

This dataset provides the output of six Wave Energy Converter Simulator (WEC-Sim) simulations and accompanying documentation for the modeling of Triton Systems' oscillating water column (OWC) system at tank scale (validated using available data for tuning the model, Tests 1-2) and...
Forbush, D. et al Sandia National Laboratories
Aug 30, 2024
3 Resources
0 Stars
Awaiting release

TEAMER AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Test Logs and Results

Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Hagmuller, A. et al AquaHarmonics, Inc.
Dec 16, 2021
9 Resources
0 Stars
Publicly accessible

TEAMER: Laboratory Upgrade Point Absorber v2 CAD Model and Bill of Materials

The Laboratory Upgrade Point Absorber (LUPA) is an open-source wave energy converter designed and tested by Oregon State University. The computer-aided design (CAD) files are provided here in two forms: the original SOLIDWORKS (2024) model as "LUPA SOLIDWORKS.zip" and as a STEP fi...
Robertson, B. et al Oregon State University
Apr 22, 2025
9 Resources
0 Stars
Curated

StingRAY H1 Humboldt Cost Breakdown Structure

Columbia Power LCOE (levelized cost of energy) Model for the Stingray H1 at the DOE Reference Site of Humboldt, CA. The model is integrated with and reports LCOE from DOE Cost Breakdown Structure
Rhinefrank, K. Columbia Power Technologies, Inc.
Mar 06, 2017
1 Resources
0 Stars
Publicly accessible

TEAMER: Drifting Hydrophone System Block Diagram and Pre-Amplifier Calibrations

This data release is part of TEAMER RFTS 2, where the Cooperative Institute for Marine Resources Studies (CIMRS) at Oregon State University is performing hardware and software development and integration of four newly designed drifting hydrophone systems for underwater noise measu...
Turnbull, J. et al Pacific Marine Energy Center (PMEC)
Feb 26, 2024
3 Resources
0 Stars
Curated

CalWave First Iterative PTO Description

This documents summarizes a preliminary first iterative design of a PTO device developed by CalWave. The document includes controls, hydraulic, and electric architectures from the first iteration of the CalWave PTO design that match requirements set out by the "CalWave Holistic PT...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
2 Resources
0 Stars
Awaiting release

HERO WEC V1.0 2024 WEC-Sim Detailed Simulation Runs and Summary Data

This dataset includes results from simulations of NREL's hydraulic and electric reverse osmosis wave energy converter (HEREO WEC). Simulation runs include 135 wave cases that were based on the updated WEC-Sim model, which is linked below. The data represented in this repository i...
Panzarella, J. et al National Renewable Energy Laboratory
Jul 01, 2024
6 Resources
0 Stars
Publicly accessible

MOIS CAD Models

SolidWorks models of the Modular Ocean Instrumentation System (MOIS) data acquisition system components in it's subsea enclosure. The zip file contains all the components necessary for the assembly.
Nelson, E. National Renewable Energy Laboratory
Dec 03, 2015
1 Resources
0 Stars
Publicly accessible

Advanced Control Systems for Wave Energy Converters

This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture eff...
Scruggs, J. et al Resolute Marine Energy, Inc.
Jan 30, 2017
4 Resources
0 Stars
Publicly accessible

Simulink Model of a New Energy EVG-005 5kW Hydropower Turbine

Simulink model for a New Energy 5kW hydropower turbine. ADCP data ("ds_streamwise_7_13.nc") and DC voltage, DC current, and rotor rotation observed from the New Energy EVG-005 Current Energy Converter (CEC) ("electrical_7_13_10ohms.nc") were collected at the Tanana River Test Sit...
Browning, E. et al University of Alaska Fairbanks
Jul 13, 2023
2 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Preliminary Turbine Hydrodynamic Design

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System 2.0 Final BP1 Turbine Design Technical Report

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

TEAMER: MADWEC Techno-Economic Analysis

The objective of this project was for the facility to conduct a techno-economic assessment (TEA) of the Maximal Asymmetric Drag Wave Energy Converter (MADWEC), developed by the University of Massachusetts Dartmouth (UMass Dartmouth). MADWEC is used for powering remote monitoring a...
Ortega, T. and Baca, E. National Renewable Energy Laboratory
Mar 08, 2024
2 Resources
0 Stars
Publicly accessible

UMass 2-Body WEC Techno-Economic Assessment

The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
Publicly accessible

Control-based optimization for tethered tidal kite

This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting control-based techniques to maximize effectiveness of a tethered tidal kite. Below are the abstracts of each file included in the submission. Cobb...
Vermillion, C. et al North Carolina State University
Mar 02, 2020
3 Resources
0 Stars
Publicly accessible

Triton: Survivability Enhancement of a Multi-Mode Point Absorber

The overall goal of this project was to design and validate a survival mode for the Triton WEC that allows for a reduction in peak loads, while simultaneously allowing for a reduction of capital cost due to the elimination of overdesign to account for uncertainty. In addition, the...
Mundon, T. and Rosenberg, B. Oscilla Power, Inc.
Sep 28, 2018
11 Resources
0 Stars
Publicly accessible

RM3 Wave Tank Validation Model

An approximately 1/75th scale point absorber wave energy absorber was built to validate the testing systems of a 16k gallon single paddle wave tank. The model was build based on the RM3 design and incorporated a linear position sensor, a force transducer, and wetness detection sen...
Candon, C. and Fao, R. National Renewable Energy Laboratory
Jul 31, 2023
3 Resources
0 Stars
Publicly accessible

TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System

Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Awaiting release

Wave Carpet Controls Design Optimization

To assess CalWave's submerged Wave Carpet Technology for system performance advancement, CalWave seeks to test advanced controls methodologies on a simplified wave carpet model, which potentially can be used in further research to leverage the design to a full wave carpet assessme...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Awaiting release

Reference Model 3 Scaled Geometry (RM3: Wave Point Absorber)

Contains the Reference Model 3 (RM3) scaled scale geometry files of the Wave Point Absorber, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM3 device ...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
7 Resources
0 Stars
Publicly accessible

Aquantis 2.5 MW Ocean Current Generation Device Scaled Tank Test Design and Results

Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This datase...
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
46 Resources
0 Stars
Publicly accessible

CalWave Device Behavior in Different Sea States from Scaled Tank Testing

This submission contains a summary of tank test derived WEC device behavior in different irregular sea states. CalWave sought to conduct experimental tank testing of scaled prototype units early on in the design process to obtain a first estimation of device performance for sea ...
Boerner, T. and Murray, B. CalWave Power Technologies Inc.
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible

TEAMER: Experimental Validation and Analysis of Deep Reinforcement Learning Control for Wave Energy Converters

Through this TEAMER project, Michigan Technological University (MTU) collaborated with Oregon State University (OSU) to test the performance of a Deep Reinforcement Learning (DRL) control in the wave tank. Unlike model-based controls, DRL control is model-free and can directly max...
Zou, S. et al Michigan Technological University
Mar 07, 2025
7 Resources
0 Stars
Awaiting curation

CalWave Tank Testing Lir Deep Ocean Basin

Experimental tank testing report for CalWave's 1:20 & 1:30 scale prototype testing at the Lir National Ocean Test Facility in Ireland. Testing was completed in January 2018. Test report includes description of the scaled prototype, primary testing objectives, instrumentation and b...
Boerner, T. CalWave Power Technologies Inc.
Jan 15, 2018
1 Resources
0 Stars
Publicly accessible

TidGen MHK Generator Composite Fatigue Analysis Procedure

A procedure was described for performing a fatigue analysis of composite foils for an MHK generator. The steps included generating load data, S-N (Stress versus Number of cycles to failure) diagrams through fatigue testing, cycle counts, damage versus load, and cumulative damage. ...
Krumpe, A. ORPC Inc.
Apr 14, 2020
2 Resources
0 Stars
Publicly accessible
<< Previous1234567Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service