OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 1 - 25 of 166.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"PTO control"×

Holistic Control Embedded PTO Development Target Performance Metrics Definitions

Collection of Power Take-Off (PTO), Power Conversion Chain (PCC), and relevant device metrics to be used for performance assessment of the Control co-designed PTO including brief summary of literature, baseline, and target metrics values.
Boerner, T. et al CalWave Power Technologies Inc.
Jul 30, 2019
1 Resources
0 Stars
Publicly accessible

CalWave First Iterative PTO Description

This documents summarizes a preliminary first iterative design of a PTO device developed by CalWave. The document includes controls, hydraulic, and electric architectures from the first iteration of the CalWave PTO design that match requirements set out by the "CalWave Holistic PT...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
2 Resources
0 Stars
Awaiting release

CalWave Holistic PTO Design Product Requirement Document

CalWave Power Technologies is currently in the process of developing the conceptual architecture for a fully upscaled Wave Energy Converter. Current and past efforts have been for smaller scaled systems, with commensurately lower forces and length scales. This document contains a ...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
1 Resources
0 Stars
Awaiting release

HydroAir Power Take Off Combined Design Report

The submission is the combined design report for the HydroAir Power Take Off (PTO). CAD drawings, circuit diagrams, design report, test plan, technical specifications and data sheets are included for the Main and auxiliary control cabinets and three-phase-synchronous-motor with a ...
Pearson, G. et al Dresser-Rand Company
Jun 26, 2015
15 Resources
0 Stars
Publicly accessible

Laboratory Experiments for Highly Nonlinear WEC-Wave Conditions

This document describes the experiments carried out in December 2019 and February-March 2020 in the Directional Wave Basin at the O.H. Hinsdale Wave Research Laboratory, Oregon State University. Regular and irregular waves were generated in the absence and presence of a WEC, inclu...
Robertson, B. et al Oregon State University
Apr 30, 2020
1 Resources
0 Stars
Awaiting release

Advanced Control Systems for Wave Energy Converters

This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture eff...
Scruggs, J. et al Resolute Marine Energy, Inc.
Jan 30, 2017
4 Resources
0 Stars
Publicly accessible

CalWave WEC Holistic PTO Design

This project aims to advance the Technology Readiness Level (TRL) of CalWave’s commercial scale Power Take-Off (PTO) subsystem through further increasing the level of coupling in physical PTO and concurrent controls design. This is achieved by incorporating a systematic holistic...
Boerner, T. et al CalWave Power Technologies Inc.
Sep 02, 2022
5 Resources
0 Stars
Awaiting release

LCOE Content Model for the Heaving Point Absorber Buoy

This is the LCOE analysis spreadsheet and content model for the heaving point absorber buoy developed for controls purposes. The cost assessment was done on a wave-farm of 100-units.
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Jul 14, 2017
3 Resources
0 Stars
Publicly accessible

Wave Carpet Controls Design Optimization

To assess CalWave's submerged Wave Carpet Technology for system performance advancement, CalWave seeks to test advanced controls methodologies on a simplified wave carpet model, which potentially can be used in further research to leverage the design to a full wave carpet assessme...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Awaiting release

CalWave Tank Testing Lir Deep Ocean Basin

Experimental tank testing report for CalWave's 1:20 & 1:30 scale prototype testing at the Lir National Ocean Test Facility in Ireland. Testing was completed in January 2018. Test report includes description of the scaled prototype, primary testing objectives, instrumentation and b...
Boerner, T. CalWave Power Technologies Inc.
Jan 15, 2018
1 Resources
0 Stars
Publicly accessible

Advanced WEC Dynamics and Controls, Test 1

Numerous studies have shown that advanced control of a wave energy converter's (WEC's) power take off (PTO) can provide significant increases (on the order of 200-300%) in WEC energy absorption. Transitioning these control approaches from simplified paper studies to application in...
Coe, R. Sandia National Laboratories
Feb 26, 2016
3 Resources
0 Stars
Publicly accessible

Wave Tank Testing Report for Controls Validation of a Heaving Point Absorber

The core objectives of this project is to improve the power capture of three different wave energy conversion (WEC) devices by more than 50% using an advanced control system and validate the attained improvements using wave tank and full scale testing. In parallel, we will bring a...
Previsic, M. et al Re Vision Consulting
Aug 26, 2020
3 Resources
0 Stars
Publicly accessible

ALFA Non-linear Ocean Waves and PTO Control Strategy

Data from Advanced Laboratory and Field Arrays (ALFA) Non-linear Ocean Waves and Power Take-Off (PTO). Control Strategy project conducted at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in 2019/2020. Contains two zip files (ALFANL.zip, ALFANL2.zip)...
Bosma, B. et al Pacific Marine Energy Center (PMEC)
Oct 28, 2019
9 Resources
0 Stars
Publicly accessible

Control-based optimization for tethered tidal kite

This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting control-based techniques to maximize effectiveness of a tethered tidal kite. Below are the abstracts of each file included in the submission. Cobb...
Vermillion, C. et al North Carolina State University
Mar 02, 2020
3 Resources
0 Stars
Publicly accessible

TEAMER: Experimental Validation and Analysis of Deep Reinforcement Learning Control for Wave Energy Converters

Through this TEAMER project, Michigan Technological University (MTU) collaborated with Oregon State University (OSU) to test the performance of a Deep Reinforcement Learning (DRL) control in the wave tank. Unlike model-based controls, DRL control is model-free and can directly max...
Zou, S. et al Michigan Technological University
Mar 07, 2025
7 Resources
0 Stars
Awaiting curation

TEAMER: CalWave UMaine 2021 Tank Testing

This is the data submission to the teamer report for RFTS 1 (request for technical support) during which tank testing at UMaine W2 tank occurred. This submission includes the relevant information and recorded data of CalWave's UMaine wave tank testing conducted under TEAMER Reques...
Boerner, T. CalWave Power Technologies Inc.
Apr 01, 2021
1 Resources
0 Stars
Awaiting release

WEC Controls Optimization Final Report

The over-arching project objective is to fully develop and validate optimal controls frameworks that can subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices represent a fundamental building block for WEC designers that must be cons...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Publicly accessible

LandRAY PTO Test Plans with NREL NWTC 5 MW Dynamometer

The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; ...
Prudell, J. et al Columbia Power Technologies, Inc.
Feb 29, 2016
5 Resources
0 Stars
Publicly accessible

TEAMER: Additional Degree of Freedom for WEC Model

'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Awaiting release

StingRAY WEC Risk Register

Risk Registers for major subsystems of the StingRAY WEC completed in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. Columbia Power Technologies, Inc.
Feb 24, 2017
18 Resources
0 Stars
Publicly accessible

TEAMER: Experimental Characterization of a Laboratory-Scaled Oscillating Surge Wave Energy Converter

This data is a result of an experimental campaign to characterize the hydrodynamics and performance of a laboratory-scale oscillating surge wave energy converter (OSWEC). The device was 85 cm wide, 1.4 meters tall, and 14 cm thick and was tested in the Sea Wave Environmental Lab (...
Lydon, B. et al University of Washington
Apr 05, 2024
8 Resources
0 Stars
Curated

CalWave Open Water Demo Budget Period 1 Reports

The objective of the project is to advance the Technology Readiness Level (TRL) of the Wave Energy Converter (WEC) developed by CalWave Wave Power Technologies Inc (CalWave) through advanced numerical simulations, dynamic hardware tests, and ultimately a scaled open water demonstr...
Boerner, T. et al CalWave Power Technologies Inc.
Jun 03, 2019
8 Resources
0 Stars
Publicly accessible

PacWave South SeaRAY k2 Risk Registers

The SeaRAY is a deployable power system for maritime sensors, monitoring equipment, communications, unmanned underwater vehicles, and other similar payloads. This project is to design, deliver, and test a prototype low-power WEC that lowers the total cost of ownership and provides...
Lenee-Bluhm, P. Columbia Power Technologies, Inc.
Sep 29, 2023
12 Resources
0 Stars
Awaiting release

Advanced Wave-to-Wire OWC model in WEC-Sim

Accurate numerical models are crucial for the development of wave energy converter (WEC) technologies, providing the means for power production and lifetime assessment, site selection, and design of mooring lines, PTO systems and controllers, among other aspects. The present proje...
Peñalba, M. et al Mondragon Goi Eskola Politeknikoa
Dec 20, 2024
2 Resources
0 Stars
In curation

TEAMER: AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Sim Model

Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Tom, N. and Leon, J. AquaHarmonics, Inc.
Dec 31, 2021
6 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service