OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 1 - 25 of 173.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"design tool"×

AeroDyn V15.04: Design Tool for Wind and MHK Turbines

AeroDyn is a time-domain wind and MHK turbine aerodynamics module that can be coupled into the FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal-axis wind turbines. AeroDyn V15.04 has been updated to include a cavitation check for MHK tu...
Murray, R. et al National Renewable Energy Laboratory
Apr 28, 2017
1 Resources
0 Stars
Publicly accessible

Levelized Cost of Electricity (LCOE) Content Model for Design of High Deflection Foils for MHK Applications

The LCOE Content Model provides data submitters with an easy and consistent means of uploading data that can be used to calculate the levelized cost of energy for MHK devices. These data are important to DOE and will be used to develop data products that provide quantitative info...
McEntee, J. Ocean Renewable Power Company
Apr 22, 2022
1 Resources
0 Stars
Awaiting release

Centipod WEC, Survivable Wave Energy Converters, Final Technical Report

This project shows that the choice of a secondary DOF for survivability is a viable option to reduce the levelized cost of energy (LCOE) in WEC designs. This report will cover the calculation of the concluded LCOE advantage using Dehlsen Associates’ “Centipod” WEC, but will ...
McCall, A. Dehlsen Associates, LLC
Oct 16, 2020
1 Resources
0 Stars
Publicly accessible

TEAMER: Ocean Survivability Analysis for a WEC Post-Access Report Data, Newport, OR

E-Wave Technologies LLC worked with the American Bureau of Shipping for the project of ocean survivability analysis of a wave energy converter that powers marine aquaculture. The performance period extended from 9/15/2021 to 6/30/2022 off the coast of Newport, Oregon. The data and...
Lou, J. et al E-Wave Technologies LLC
Jun 30, 2022
55 Resources
0 Stars
In curation

TEAMER: Ultra-Low-Cost Torpedo Anchors for Marine Renewable Energy

The submission includes all raw and processed data from Sperra's TEAMER RFTS 9 Drop Testing of Ultra-Low-Cost Torpedo Anchors for Marine Renewable Energy project. This dataset provides comprehensive technical information from the drop test campaign conducted at Sandia National Lab...
Bell, M. et al RCAM Technologies, Inc. DBA Sperra
Sep 20, 2024
8 Resources
1 Stars
Curated

TEAMER: Numerical Modeling and Optimization of the iProTech Pitching Inertial Pump (PIP) Wave Energy Converter (WEC)

This project focused on developing an automated workflow to evaluate and optimize the iProTech Pitching Inertial Pump (PIP) wave energy converter (WEC) using open-source Python packages and the MATLAB/Simulink tool, WEC-Sim. The process involved parameterizing key design variables...
Wynn, N. et al National Renewable Energy Laboratory
Apr 11, 2024
1 Resources
0 Stars
Publicly accessible

WEC-Sim Wave Energy Converter Simulator

WEC-Sim (Wave Energy Converter SIMulator) is an open-source wave energy converter (WEC) simulation tool. This repository includes: link to the WEC-Sim project website which includes, introductory and overview information about the WEC-Sim, WEC-Sim publications, release notes, li...
Lawson, M. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation

Ocean Thermal Energy Conversion (OTEC) Datasets

The data presented here were collected from the Ocean Thermal Extractable Energy Visualization (OTEEV) project. The OTEEV project focused on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. This project explored the feasibili...
Langle, N. et al National Renewable Energy Laboratory
Nov 25, 2014
10 Resources
0 Stars
Curated

Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology

The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible

UMass 2-Body WEC Techno-Economic Assessment

The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
Publicly accessible

Small Scale WEC Updated Performance Modeling Data

Small Scale WEC Performance Modeling Data is performance data from downscaled models of common WEC devices and their calculated performance outputs. This data is used by the Small WEC interactive modeling tool hosted by PRIMRE. The devices include a point absorber, a two-body poin...
King, T. et al National Renewable Energy Laboratory
Oct 28, 2022
25 Resources
0 Stars
In progress

TEAMER: Tidal Turbine Test, Downeast Turbines, July 12, 2021

Downeast Turbines tested a tidal turbine prototype with novel rotor/channel system and lateral effluent discharge apparatus (LEDA), during five days of testing in the flume at Alden Lab. Three days of testing (July 12-14, 2021) focused on turbine power metrics of torque and rpm, w...
McBride, G. Downeast Turbines
Mar 26, 2022
6 Resources
0 Stars
Publicly accessible

Small Scale WEC Performance Modeling Data

Small Scale WEC Performance Modeling Data is performance data from downscaled models of common WEC devices and their calculated performance outputs. This data is used by the Small WEC interactive modeling tool hosted by PRIMRE. The devices include a point absorber, a two-body poin...
King, T. et al National Renewable Energy Laboratory
Nov 08, 2021
68 Resources
0 Stars
Publicly accessible

Triton-C WEC Detailed System Design Package

The Detailed System Design Package for the Triton-C WEC, including a report and CAD drawings pertaining to the overall preliminary design, system arrangement, surface float hull, and surface float arrangement. D6 presents an overview of the final detailed design package for the T...
Stinson, K. et al Oscilla Power, Inc.
Nov 02, 2020
5 Resources
0 Stars
Awaiting release

CalWave Design For PacWave Preliminary Design Phase Project Management Plan

The project objectives for CalWave's deployment at PacWave are distinguished by the Preliminary Design Phase and the Detailed Design Phase. For the Preliminary Design Phase, the Project Management Plan outlines the project objectives, broader impacts, project tasks and timeline, c...
Boerner, T. et al CalWave Power Technologies Inc.
Feb 01, 2021
1 Resources
0 Stars
Awaiting release

CalWave First Iterative PTO Description

This documents summarizes a preliminary first iterative design of a PTO device developed by CalWave. The document includes controls, hydraulic, and electric architectures from the first iteration of the CalWave PTO design that match requirements set out by the "CalWave Holistic PT...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
2 Resources
0 Stars
Awaiting release

CalWave Design for PacWave Preliminary Design Phase Risk Management Plan

The project objectives for CalWave's deployment at PacWave are distinguished by the Preliminary Design Phase and the Detailed Design Phase. During the Preliminary Design Phase, the Risk Register was established to identify risks and mitigation strategies. The Risk Management Plan ...
Boerner, T. et al CalWave Power Technologies Inc.
Feb 01, 2021
2 Resources
0 Stars
Awaiting release

Triton-C Point Absorber Preliminary System Design Package

Preliminary System Design Package for the Triton-C WEC, including a report and CAD drawings pertaining to the overall preliminary design, system arrangement, surface float hull, and surface float arrangement.
Mundon, T. Oscilla Power, Inc.
Dec 01, 2017
4 Resources
0 Stars
Publicly accessible

Design of high-deflection foils MHK applications FEA models RivGen Turbines

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 01, 2021
2 Resources
0 Stars
Awaiting release

Advanced TidGen Power System Deployment and Mooring System

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
2 Resources
0 Stars
Publicly accessible

SeaRAY WEC Preliminary Design and Test Planning

The SeaRAY is a deployable power system for maritime sensors, monitoring equipment, communications, unmanned underwater vehicles, and other similar payloads. This project is to design, deliver, and test a prototype low-power WEC that lowers the total cost of ownership and provides...
Hammagren, E. et al Columbia Power Technologies, Inc.
May 18, 2020
4 Resources
0 Stars
Awaiting release

Translated System Requirements into PTO Design Requirements (in addition to Component-level metrics) for the HydroAir Power Take Off System

Includes Maximum Cost, Critical Dimensions and Weights, Damping Curve, Rotor Speed Profile Changes, Mechanical Power for a given pressure and airflow, Turbine rpm range and power, Generator input torque, Torque speed curves/profile, Generated electrical power for given input torqu...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release

Design Specifications for Manufacturer for the HydroAir Power Take Off System

Includes Design Specs for Manufacturer, PTO Weight, PTO Dimensions, Turbine (Rotor and Ductwork) Design, CAD Drawings of the turbine and rotor, List of components and weights, Materials Used, Generator, List of components and weights, Structural Design, CAD drawings of the structu...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release

Advanced TidGen Power System Preliminary Turbine Hydrodynamic Design

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Final System Design Technical Report

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service