Search MHK Data
Showing results 1 - 25 of 51.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
Performance data for an axial-flow turbine with passive adaptive blades
To support the development of simulation tools for passive adaptive turbine rotors, an experimental data set from a laboratory-scale axial-flow turbine with passive adaptive blades is provided. The 0.45-meter diameter turbine was tested in the Alice C. Tyler Flume at the Universit...
Van Ness, K. et al University of Washington
May 01, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
TEAMER: Experimental performance characterization of a shrouded axial-flow turbine
Sitkana has developed a shrouded hydrokinetic turbine with a modular, low-cost design that can be scaled to meet the needs of remote communities. With technical support from the University of Washington, Sitkana sought to experimentally characterize the mechanical power and struct...
McMullan, L. et al University of Washington
Oct 20, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Aquantis 2.5 MW Ocean Current Generation Device Tow Tank Test Model Test Results Data
Dataset contains both captured and dynamic tow tank test model data from the Aquantis 2.5 MW ocean current generation device.
Arthurs, D. Dehlsen Associates, LLC
Jun 03, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Reference Model 1 Full Scale Geometry (RM1: Tidal Current Turbine)
Contains the Reference Model 1 (RM1) full scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, X_T, IGS, and STEP files, and require a CAD program to view. This data was...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Reference Model 1 Scaled Geometry (RM1: Tidal Current Turbine)
Contains the Reference Model 1 (RM1) scaled scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM1 devic...
Neary, V. and Hill, C. Sandia National Laboratories
Sep 30, 2014
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
AeroDyn V15.04: Design Tool for Wind and MHK Turbines
AeroDyn is a time-domain wind and MHK turbine aerodynamics module that can be coupled into the FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal-axis wind turbines. AeroDyn V15.04 has been updated to include a cavitation check for MHK tu...
Murray, R. et al National Renewable Energy Laboratory
Apr 28, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Virtual Flow Solver Geophysics: A 3D Incompressible Navier-Stokes Solver
Virtual Flow Solver Geophysics (VFS-Geophysics) is a three-dimensional (3D) incompressible Navier-Stokes solver based on the Curvilinear Immersed Boundary (CURVIB) method. The CURVIB is a sharp interface type of immersed boundary (IB) method that enables the simulation of fluid f...
Khosronejad, A. et al Stony Brook University
Jul 17, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Reference Model 2 Scaled Geometry (RM2: River Current Turbine)
Contains the Reference Model 2 (RM2) scaled scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM2 devic...
Neary, V. and Hill, C. Sandia National Laboratories
Sep 30, 2014
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Reference Model 4 Full Scale Geometry (RM4: Ocean Current Turbine)
Contains the Reference Model 4 (RM4) full scale geometry files of the Ocean Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, X_T, and STEP files, and require a CAD program to view. This data was...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Aquantis 2.5 MW Ocean Current Generation Device Scaled Tank Test Design and Results
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This datase...
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
46 Resources
0 Stars
Publicly accessible
46 Resources
0 Stars
Publicly accessible
Next Generation RivGen Power System: Kvichak River, AK Overwinter Ice Study
The University of Alaska Fairbanks (UAF) Alaska Hydrokinetic Energy Research Center was tasked with developing a real-time data telemetry / remote power generation system to monitor frazil ice conditions in the Kvichak River in support of the U.S. Department of Energy funded "Next...
Kasper, J. et al Igiugig Village Council
Oct 04, 2017
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology
The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible
24 Resources
0 Stars
Publicly accessible
Design of high-deflection foils MHK applications CFD models RivGen turbine
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Dec 08, 2021
3 Resources
0 Stars
Awaiting release
3 Resources
0 Stars
Awaiting release
TEAMER: CFD Data on a Vertical Axis Wave Turbine
In this study from January to July of 2023, different variations of the original geometry of a vertical-axis wave turbine (VAWT) were generated and evaluated for hydrodynamic power efficiency using computational fluid dynamics (CFD). The key geometrical parameters considered in th...
Yang, Y. et al University of Texas Rio Grande Valley
Jul 31, 2023
37 Resources
0 Stars
Publicly accessible
37 Resources
0 Stars
Publicly accessible
TEAMER: Vertical Axies Hydrokinetic Turbine Data, Emrgy Inc. 2022, Post Access Submission
The data herein contains all data collected and used for the Performance Characterization Testing and Model Calibration of a Vertical Axis Hydrokinetic Turbine. The data includes performance data and durability data for the Hydrokinetic Turbine. The device performance data contain...
Cuthbert, T. Emrgy, Inc.
Apr 06, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
ARIS Acoustic Camera Data Around a 5kW In-River Turbine from Tanana River Test Site
Four days (June 14-17, 2021) of ARIS acoustic camera data from the main research barge of the Tanana River Test Site operated by UAF. Data are collected sidelooking with the turbine in part of the field of view. This data was collected as part of a fish collision risk study. An ac...
Staines, G. Pacific Northwest National Laboratory
Jun 14, 2021
19 Resources
0 Stars
Publicly accessible
19 Resources
0 Stars
Publicly accessible
Design of high-deflection foils MHK applications CFD models Helical turbines
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Nov 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Design of high deflection foils for MHK applications CFD files
The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Jun 01, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Tidal Current Cross-flow Turbine Wake ADV and PIV Data
Measurements in the wake of a high-solidity cross-flow turbine in a laboratory flume obtained using Acoustic Doppler Velocimetry and Particle Image Velocimetry for the purposes of characterizing the turbine wake and comparing the methods.
Polagye, B. University of Washington
Dec 06, 2016
6 Resources
1 Stars
Publicly accessible
6 Resources
1 Stars
Publicly accessible
Reference Model 2 Full Scale Geometry (RM2: River Current Turbine)
Contains the Reference Model 2 (RM2) full scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, X_T, and STEP files, and require a CAD program to view. This data was...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Performance Data from a 1-Meter Cross-flow Turbine with High Deflection Hydrofoils
Performance data of a 1-meter diameter cross-flow tidal turbine consisting of three NACA 0018 blades with two support struts with high deflection hydrofoils. Data was collected at the University of New Hampshire Jere A. Chase Ocean Engineering Lab within the tow tank. Three turbin...
Marone, N. et al University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Jul 21, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Pitching Foil Crossflow Turbine Efficiency Data
This dataset documents the efficiency testing of a pitching foil crossflow turbine, conducted at the University of New Hampshire's (UNH) Chase Ocean Engineering Laboratory tow tank facility. The tests explored various pitch phases and amplitudes, ranging from 0 to 18 degrees, acro...
McEntee, J. Ocean Renewable Power Company
Aug 07, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Hydrokinetic Canal Measurements: Inflow Velocity, Wake Flow Velocity, and Turbulence
The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity con...
Gunawan, B. Sandia National Laboratories
Jun 11, 2014
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
In-Situ Blade Strain Measurements of a Crossflow Turbine Operating in a Tidal Flow
This data was collected between October 25 and December 12 of 2022 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). The priority of this measurement campaign was to collect blade strain data from a crossflow turbi...
Bharath, A. et al National Renewable Energy Laboratory
Dec 16, 2022
15 Resources
0 Stars
Awaiting curation
15 Resources
0 Stars
Awaiting curation
Turbine Depth Optimization Study, Admiralty Inlet, WA
The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu.
Kawase, M. et al University of Washington
Nov 22, 2009
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible