OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 126 - 150 of 170.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"laboratory testing"×
Document×

Advanced TidGen Power System Preliminary Turbine Hydrodynamic Design

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System 2.0 Final BP1 Turbine Design Technical Report

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System ORPC Public Technical Report, Device Design

Technical report for public dissemination on the design progress for the Advanced TidGen(R) Power System.
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 27, 2018
1 Resources
0 Stars
Publicly accessible

Techno-Economic Optimization of the SurgeWEC Device

This is the post-access report for a Teamer-funded effort to optimize the SurgeWEC device, a near-shore pivoting flap wave energy conversion device used to desalinate water. Parametrically driven cost and performance models enabled an integrated optimization approach at the farm s...
Previsic, M. Re Vision Consulting
Feb 20, 2022
2 Resources
0 Stars
Publicly accessible

TEAMER: Cross-flow Turbine Hydrodynamics

The objective of this work is to validate RANS and LES computations of cross-flow turbine hydrodynamics using laboratory scale measurements. Validation involves the comparison of time-and phase averaged performance metrics and flowfields across the widest practical range of turbin...
Athair, A. et al University of Washington (NNMREC)
Mar 25, 2025
7 Resources
0 Stars
Curated

Centipod WEC, Survivable Wave Energy Converters, Final Technical Report

This project shows that the choice of a secondary DOF for survivability is a viable option to reduce the levelized cost of energy (LCOE) in WEC designs. This report will cover the calculation of the concluded LCOE advantage using Dehlsen Associates’ “Centipod” WEC, but will ...
McCall, A. Dehlsen Associates, LLC
Oct 16, 2020
1 Resources
0 Stars
Publicly accessible

Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology

The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible

Direct-Drive Electrical Generator and PTO System for Flap-type Wave Energy Converters

Project and generator specifications and initial prototype test data for flap-type wave energy converters (WEC)
Englebretson, S. ABB Inc.
Mar 20, 2015
2 Resources
0 Stars
Publicly accessible

Modeling the Integration of Marine Energy into Microgrids Wave Resource Assessment

This submission has wave resource assessments which were conducted for six locations based on IEC requirements using the DOE WPTO Hindcast data and MHKiT. The locations are chosen to provide varying wave climates and include PacWave South, OR; Wave Energy Testing Site (WETS), HI; ...
Mankle, H. and Robertson, B. University of Alaska Fairbanks
Jan 19, 2023
9 Resources
0 Stars
Publicly accessible

Wave Energy Prize 1/20th Testing AquaHarmonics Point Absorber

Data from the 1/20th scale testing data completed on the Wave Energy Prize for the AquaHarmonics team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necess...
Scharmen, W. Ricardo Detroit Technical Center
Sep 02, 2016
69 Resources
0 Stars
Publicly accessible

NWEI Azura December 2016 Data

Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing spe...
Lettenmaier, T. Northwest Energy Innovations
Dec 29, 2016
2 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System Control and SCADA System

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
2 Resources
0 Stars
Publicly accessible

TEAMER: Drifting Hydrophone System Block Diagram and Pre-Amplifier Calibrations

This data release is part of TEAMER RFTS 2, where the Cooperative Institute for Marine Resources Studies (CIMRS) at Oregon State University is performing hardware and software development and integration of four newly designed drifting hydrophone systems for underwater noise measu...
Turnbull, J. et al Pacific Marine Energy Center (PMEC)
Feb 26, 2024
3 Resources
0 Stars
Curated

TEAMER: Sandia and CalWave Torque Spring Assessment

Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type ...
Boerner, T. et al CalWave Power Technologies Inc.
Apr 01, 2022
3 Resources
0 Stars
Awaiting release

CalWave WEC Open Water Demonstration Final Test Report

The objective of this project is to advance the Technology Readiness Level of the x1 Wave Energy Converter (WEC) developed by CalWave Power Technologies Inc. through advanced numerical simulations, dynamic hardware tests, and ultimately a scaled open water demonstration deployment...
Boerner, T. et al CalWave Power Technologies Inc.
Nov 30, 2022
2 Resources
1 Stars
Awaiting release

TEAMER Extreme Events Modeling for the MARMOK-OWC Wave Energy Converter

Through the TEAMER program, Sandia National Laboratories (SNL) collaborated with IDOM Incorporated to study their MARMOK-Oscillating Water Column (MARMOK-OWC) wave energy conversion device. The study yielded a quantitative understanding of hydrodynamic pressures on the oscillating...
De Miguel Para, B. et al IDOM Incorporated
Dec 27, 2024
2 Resources
0 Stars
Publicly accessible

Hydrokinetic Canal Measurements: Inflow Velocity, Wake Flow Velocity, and Turbulence

The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity con...
Gunawan, B. Sandia National Laboratories
Jun 11, 2014
4 Resources
0 Stars
Publicly accessible

LandRAY PTO Testing Utilizing the NREL NWTC 5MW Dynamometer

The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; ...
Lenee-Bluhm, P. and Rhinefrank, K. Columbia Power Technologies, Inc.
Jun 13, 2016
3 Resources
0 Stars
Publicly accessible

Acoustic Doppler Velocimeter (ADV) data from the University of New Hampshire Atlantic Marine Energy Center (UNH-AMEC ) Tidal Energy Test Site during a Perigean Spring Tide

The ADV measurements contained in this submission were taken on the floating turbine deployment platform (TDP) located at the Memorial Bridge in Portsmouth, NH. The measurements were conducted 11/4/2021-11/9/2021 with the fastest currents occurring on 11/7/2021. Along with the sub...
Bichanich, M. and Wosnik, M. University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Nov 09, 2021
4 Resources
0 Stars
Publicly accessible

CalWave WEC Open Water Demonstration Public Final Test Report

The objective of this project is to advance the Technology Readiness Level of the x1 Wave Energy Converter (WEC) developed by CalWave Power Technologies Inc. through advanced numerical simulations, dynamic hardware tests, and ultimately a scaled open water demonstration deployment...
Boerner, T. et al CalWave Power Technologies Inc.
Nov 30, 2022
2 Resources
0 Stars
Publicly accessible

Aquantis 2.5 MW Ocean Current Generation Device Design Details

Items in this submission provide the detailed design of the Aquantis Ocean Current Turbine and accompanying analysis documents, including preliminary designs, verification of design reports, CAD drawings of the hydrostatic drivetrain, a test plan and an operating conditions simula...
Banko, R. et al Dehlsen Associates, LLC
Jun 03, 2015
22 Resources
0 Stars
Publicly accessible

Northwest National Marine Renewable Energy Center, OR Project Plans

Plans for Northwest National Marine Renewable Energy Center (NNMREC) Project. Mobile Ocean Test Berth (MOTB) plans PMEC-SETS Plans
Hellin, D. Northwest National Marine Renewable Energy Center
Jun 29, 2016
20 Resources
0 Stars
Publicly accessible

SeaRAY WEC Preliminary Design and Test Planning

The SeaRAY is a deployable power system for maritime sensors, monitoring equipment, communications, unmanned underwater vehicles, and other similar payloads. This project is to design, deliver, and test a prototype low-power WEC that lowers the total cost of ownership and provides...
Hammagren, E. et al Columbia Power Technologies, Inc.
May 18, 2020
4 Resources
0 Stars
Awaiting release

TEAMER: Additional Degree of Freedom for WEC Model

'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Awaiting release

H3 StingRAY Final Design and Technical Report

The goal of this Project was to develop a standards-compliant, fabrication-ready design of Columbia Power Technologies' (C-Power) next-generation wave energy converter (WEC), the StingRAY H3. The H3 is a design iteration of C-Power's StingRAY WEC and is intended for electrical pow...
Prudell, J. and Lenee-Bluhm, P. Columbia Power Technologies, Inc.
Sep 15, 2023
2 Resources
0 Stars
Publicly accessible
<< Previous1234567Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service