Search MHK Data
Showing results 1 - 25 of 47.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
TEAMER: Advanced Wave-to-Wire OWC model in WEC-Sim
Accurate numerical models are crucial for the development of wave energy converter (WEC) technologies, providing the means for power production and lifetime assessment, site selection, and design of mooring lines, PTO systems and controllers, among other aspects. This project aims...
PeƱalba, M. et al Mondragon Goi Eskola Politeknikoa
Dec 20, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
TEAMER: Wave and Current Energy Converter Modeling Workshop Materials
This dataset contains the full set of training materials used in a marine hydrokinetic (MHK) modeling workshop conducted by Sandia National Laboratories for the University of Alaska Fairbanks, funded through the U.S. Department of Energy's TEAMER program. The workshop focused on t...
McWilliams, S. et al Sandia National Laboratories
Apr 18, 2025
7 Resources
0 Stars
Curated
7 Resources
0 Stars
Curated
TEAMER: Modeling, Optimization, and Design Data for a Bio-Inspired Wave Energy Converter
This dataset contains modeling files, computational results, and analysis reports from work focused on the initial optimization and design of a bio-inspired Wave Energy Converter (WEC). Data were produced using tools including WEC-Sim and WecOptTool, with supporting scripts and mo...
Grasberger, J. et al Sandia National Laboratories
Jul 14, 2025
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
TEAMER: Triton Systems Oscillating Water Column Modeling Data and Report
This dataset provides the output of six Wave Energy Converter Simulator (WEC-Sim) simulations and accompanying documentation for the modeling of Triton Systems' oscillating water column (OWC) system at tank scale (validated using available data for tuning the model, Tests 1-2) and...
Forbush, D. et al Sandia National Laboratories
Aug 30, 2024
3 Resources
0 Stars
Awaiting release
3 Resources
0 Stars
Awaiting release
TEAMER: Numerical Modeling of WECs to Support OES Task 10
This submission contains the files for reproducing the waves only and sphere test article simulations for the experimental setup (three different wave conditions) associated with the Teamer Request for Technical Support 9 (RFTS 9) fluid dynamics simulations to support the Ocean En...
Meuris, B. et al Sandia National Laboratories
Sep 23, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER: Numerical Modeling and Optimization of the iProTech Pitching Inertial Pump (PIP) Wave Energy Converter (WEC)
This project focused on developing an automated workflow to evaluate and optimize the iProTech Pitching Inertial Pump (PIP) wave energy converter (WEC) using open-source Python packages and the MATLAB/Simulink tool, WEC-Sim. The process involved parameterizing key design variables...
Wynn, N. et al National Renewable Energy Laboratory
Apr 11, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UMass 2-Body WEC Techno-Economic Assessment
The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: WEC-Sim Modeling of Laminar Scientific Patented Seesaw Wave Energy Converter
Laminar Scientific's patented nearshore seesaw wave energy converter has several features assessed in this study utilizing the Wave Energy Converter SIMulator (WEC-Sim) Facility. One of these features is the ability to change spacing between two spherical floats of the seesaw to a...
Iyer, N. et al Laminar Scientific Inc.
Nov 21, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Techno-Economic Assessment of the Crestwing WEC Device
This dataset contains a report and an Excel file documenting a techno-economic model developed to assess the Crestwing wave energy converter (WEC), an attenuator-type device composed of two hinged rectangular barges. Funded by TEAMER and carried out by Re Vision Consulting, the st...
Previsic, M. Re Vision Consulting
Mar 14, 2025
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
TEAMER: Crossflow Turbine Fairing Geometry Optimization Report and CFD Modeling Files
The dataset includes computational fluid dynamics (CFD) models and simulation files for crossflow turbines as well as a detailed project report. The report documents the project undertaken by the Ocean Renewable Power Company (ORPC) to design and optimize a modular fairing for the...
McEntee, J. Ocean Renewable Power Company
Aug 08, 2024
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
TEAMER: FOSWEC Mooring Modeling and Analysis, Post Access Report and Data
Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
TEAMER Extreme Events Modeling for the MARMOK-OWC Wave Energy Converter
Through the TEAMER program, Sandia National Laboratories (SNL) collaborated with IDOM Incorporated to study their MARMOK-Oscillating Water Column (MARMOK-OWC) wave energy conversion device. The study yielded a quantitative understanding of hydrodynamic pressures on the oscillating...
De Miguel Para, B. et al IDOM Incorporated
Dec 27, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Tidal Energy Resource Modeling Assessment and Environmental Biological Analysis in Turnagain Arm, Cook Inlet, AK
The deployment and operation of a floating and/or submerged tidal technology in the United States coastal water require characterizing tidal stream resource potential and assessing environmental conditions and satisfying all environmental permitting requirements. The waters of Coo...
Yang, Z. et al Pacific Northwest National Laboratory
Jun 09, 2025
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: Vertical Axis Hydrokinetic Turbine Array Modeling And Optimization Data
This dataset from Emrgy Inc., in collaboration with Sandia National Laboratories, includes integration of modular vertical axis hydrokinetic (HK) turbines into a higher fidelity canal hydraulic model. This submission contains all data collected and used for the Vertical Axis Hydro...
Cuthbert, T. Emrgy, Inc.
Jul 31, 2024
34 Resources
0 Stars
Curated
34 Resources
0 Stars
Curated
TEAMER: Tidal Currents Turbine Parametric Study Flow, Power, Torque, and Energy Optimization
This is an exercise in optimizing the flow through a shrouded axial turbine to have the least resistance and to have optimal output and torque and energy. In this study, different variations of the original geometry of the current turbine designed by Hydrokinetic Energy Corp. (HEC...
Schurtenberger, W. and Ge, Z. Hydrokinetic Energy Corp.
Jul 30, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
TEAMER: Supporting model output files for Environmental Compliance Framework for Floating Tidal Turbines, Cook Inlet, AK
Orbital Marine Power (Orbital) is seeking to deploy their floating tidal technology in US waters and has considered the possibility of deploying in temperate waters including the Pacific Northwest (PNW) and the Western Passage, Maine. It has become apparent that some of the most p...
Wang, T. et al Pacific Northwest National Laboratory
Mar 01, 2023
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
TEAMER: CFD Data on a Vertical Axis Wave Turbine
In this study from January to July of 2023, different variations of the original geometry of a vertical-axis wave turbine (VAWT) were generated and evaluated for hydrodynamic power efficiency using computational fluid dynamics (CFD). The key geometrical parameters considered in th...
Yang, Y. et al University of Texas Rio Grande Valley
Jul 31, 2023
37 Resources
0 Stars
Publicly accessible
37 Resources
0 Stars
Publicly accessible
TEAMER: OSU X Hinsdale & Sandia LUPA Uncertainty Testing
This processed data is from TEAMER testing through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023. The Laboratory Upgrade Point Abs...
Robertson, B. et al Oregon State University
Oct 19, 2023
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
TEAMER: Ocean Energy Sandia WEC Simulation Results
Computational fluid simulations for wave energy converters and supporting materials from Ocean Energy's WEC Buoy TEAMER RFTS 1 (request for technical support) project in collaboration with Sandia National Laboratories. Each file includes images and video of simulation along with t...
Lewis, T. and Chartrand, C. Ocean Energy
Aug 01, 2022
7 Resources
0 Stars
Awaiting release
7 Resources
0 Stars
Awaiting release
TEAMER: Experimental Validation and Analysis of Deep Reinforcement Learning Control for Wave Energy Converters
Through this TEAMER project, Michigan Technological University (MTU) collaborated with Oregon State University (OSU) to test the performance of a Deep Reinforcement Learning (DRL) control in the wave tank. Unlike model-based controls, DRL control is model-free and can directly max...
Zou, S. et al Michigan Technological University
Mar 07, 2025
7 Resources
0 Stars
Curated
7 Resources
0 Stars
Curated
TEAMER: Experimental Characterization of a Laboratory-Scaled Oscillating Surge Wave Energy Converter
This data is a result of an experimental campaign to characterize the hydrodynamics and performance of a laboratory-scale oscillating surge wave energy converter (OSWEC). The device was 85 cm wide, 1.4 meters tall, and 14 cm thick and was tested in the Sea Wave Environmental Lab (...
Lydon, B. et al University of Washington
Apr 05, 2024
9 Resources
0 Stars
Curated
9 Resources
0 Stars
Curated
TEAMER: Heterogeneous Wave Energy Converter Test Data
This dataset was generated during the Heterogeneous Wave Energy Converter (HetWECs) experimental campaign conducted at the O.H. Hinsdale Direction Wave Basin at Oregon State University. Experiments include system identification, hydrodynamics, and power take-off (PTO) tests. The ...
Vitale, O. et al Cornell University
Jun 27, 2025
8 Resources
0 Stars
Curated
8 Resources
0 Stars
Curated
TEAMER: Maximal Asymmetric Drag Wave Energy Converter
Boundary element method (BEM) and WEC-Sim analysis of UMass Dartmouth's maximal asymmetric drag wave energy converter (MADWEC), including its tethered ballast system and PTO (power take-off).
This project is part of the TEAMER RFTS 6 (request for technical support) program.
MacDonald, D. et al University of Massachusetts Dartmouth
Aug 18, 2023
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
TEAMER: xWave Real Time IMU Optimization for Advanced Controls
CalWave is developing a wave energy converter (WEC) called xWave that operates fully submerged and is classified as a type of submerged pressure differential WEC. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multipl...
Spinneken, J. and Boerner, T. CalWave Power Technologies Inc.
Apr 18, 2023
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
TEAMER: Simulation Data of Displacement and Thrust for the Electrically Engaged UnduLation (EEL) Marine Energy System
This dataset contains time-series simulation data generated by Pyro-E LLC using Simcenter STAR-CCM+ that characterizes the hydromechanical behavior of the Electrically Engaged unduLation (EEL) marine energy system. Data include measurements of tail displacements in the X and Z dir...
Lu, K. et al Oak Ridge National Laboratory
Jan 06, 2023
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated