Search MHK Data
Showing results 26 - 50 of 80.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
TEAMER: Additional Degree of Freedom for WEC Model
'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
Wave Tank Testing Report for Controls Validation of a Heaving Point Absorber
The core objectives of this project is to improve the power capture of three different wave energy
conversion (WEC) devices by more than 50% using an advanced control system and validate the
attained improvements using wave tank and full scale testing. In parallel, we will bring a...
Previsic, M. et al Re Vision Consulting
Aug 26, 2020
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
TidGen: Turbine Production Report
The report below provides a comprehensive overview of the production process for the first TidGen turbine. The turbine is composed of several key components, including carbon fiber foils, e-glass struts, and a steel shaft. The report covers the production of each of these elements...
Barrington, M. Ocean Renewable Power Company
Jan 30, 2023
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Water Horse Hydroelectric Harvester Dual Oscillator Field Testing Data, UAF Nenana Alaska, 2021
Raw and processed timeseries data generated during field testing of a single "galloping oscillator" Water Horse prototype at PMEC (Pacific Marine Energy Center) Tanana River Test Site in Nenana, AK for 3 weeks in 2021. Data collection by University of Alaska, Fairbanks.
Loeffler, B. et al University of Alaska Fairbanks
Aug 18, 2021
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
Admiralty Inlet Advanced Turbulence Measurements: June 2014
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid...
Kilcher, L. National Renewable Energy Laboratory
Jun 30, 2014
26 Resources
0 Stars
Publicly accessible
26 Resources
0 Stars
Publicly accessible
LCOE Baseline for Wave Carpet WEC Device
This is an LCOE (levelized cost of energy) baseline assessment for the Wave Carpet.
Previsic, M. et al Re Vision Consulting
Jul 26, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
RITE Gen5 KHPS Performance Period B
Includes Kinetic Hydropower System (KHPS) Turbine performance data from the RITE Gen5 KHPS turbine at the 5 meter size. This data was collected over 16 days in May 2021 during Period B operation. Along with performance data, the data includes setup data, project metadata, and char...
Corren, D. et al Verdant Power Inc.
Dec 23, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Advanced TidGen Power System Summary Presentation
The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
May 10, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Advanced TidGen Power System ORPC Public Technical Report, Device Design
Technical report for public dissemination on the design progress for the Advanced TidGen(R) Power System.
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TidGen: Single Turbine Test Procedure and Data Acquisition Plan
The included report details the procedure for conducting a performance test of a single turbine for the Advanced TidGen system. The TidGen80 Single Turbine System (TD80-STS or STS) will be used to test the power production performance of a single turbine in a tidal environment. In...
Hayes, N. Ocean Renewable Power Company
Jun 03, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
RITE Gen5 KHPS Performance Period A
Includes Kinetic Hydropower System (KHPS) Turbine performance data from the RITE Gen5 KHPS turbine at the 5 meter size. This data was collected over Period A which was a 39 day span ending on 11/12/2021. This data was collected under the European Marine Energy Centre (EMEC) power ...
Colby, J. et al Verdant Power Inc.
Nov 12, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Water Horse Hydroelectric Harvester Single Oscillator Field Testing Data, UAF Nenana Alaska, 2020
Raw and processed timeseries data generated during field testing of a single oscillating hydrofoil Water Horse prototype at PMEC (Pacific Marine Energy Center) Tanana River Test Site in Nenana, AK in July 2020. Data collection by University of Alaska, Fairbanks.
Loeffler, B. et al University of Alaska Fairbanks
Jul 10, 2020
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
Admiralty Inlet Advanced Turbulence Measurements: May 2015
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). Thes...
Kilcher, L. National Renewable Energy Laboratory
May 18, 2015
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Wave Tank Testing of 1-DoF Heaving Buoy for Controls Validation Purposes
This submission includes the wave tank testing data used to validate the controls optimization efforts of a heaving 1-DoF buoy.
Previsic, M. et al Re Vision Consulting
Jul 13, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Verdant Power Gen5 KHPS and TriFrame System Content Models
This submission includes the Component Content Model for Verdant Power TriFrame and the System Content Model for Verdant Power TriFrame + 3 Gen5 KHPS Turbines. The TriFrame is the foundation component of the system, which consists of a TriFrame + 3 Gen5 KHPS Turbines (TF+3T).
Corren, D. et al Verdant Power Inc.
Jul 05, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Verdant Power TriFrame, Gen5 KHPS Turbine, and BOP System Content Models
This submission includes System Content Models with data following manufacture for the Verdant Power TriFrame, Gen5 Kinetic Hydropower System (KHPS) Turbines, and Balance of Plant (BOP). The TriFrame installs 3 Gen5 KHPS Turbines. The BOP system controls the turbines and interconn...
Corren, D. et al Verdant Power Inc.
Mar 31, 2020
3 Resources
0 Stars
Awaiting release
3 Resources
0 Stars
Awaiting release
TriFrame Mount Structural Performance Period A
Long-Term TriFrame Monitoring System (LTTFMS) data collected during Period A (13 days 10/22/20 11/4/20). The central component of the Verdant Power Free Flow System is a three-bladed horizontal-axis turbine. The turbine is equipped with a composite rotor with three fixed-pitch bl...
Colby, J. et al Verdant Power Inc.
Nov 12, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
StingRAY Failure Mode, Effects and Criticality Analysis: WEC Risk Registers
Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficient...
Rhinefrank, K. Columbia Power Technologies, Inc.
Jul 25, 2016
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
LCOE Content Model for the Heaving Point Absorber Buoy
This is the LCOE analysis spreadsheet and content model for the heaving point absorber buoy developed for controls purposes. The cost assessment was done on a wave-farm of 100-units.
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Jul 14, 2017
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, MPC Controller MATLAB Code
This archive contains the MATLAB code for the model predictive control (MPC) controller developed in this project. The archive containing the WaveDyn models used for analysis of the Centipod with the MPC controller is linked in this submission.
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Observation-Based Resource Assessment of Gulf Stream MHK
Multi-year measurements of current velocity, salinity, and temperature from fixed and vessel-mounted sensors quantify Gulf Stream (GS) MHK resource variability and inform development off Cape Hatteras, NC. Vessel transects across the GS demonstrate a jet-like velocity structure wi...
Muglia, M. et al North Carolina State University
Jan 01, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
RITE Gen5 KHPS Levelized Cost of Energy
Levelized Cost of Energy analysis for Verdant Power Gen5 KHPS utilizing annualized AEP based on actual energy generation at the RITE Project during 2020-21. The WEC devices analyzed include attenuator, point absorber, oscillating wave surge converter, oscillating water column, ove...
Corren, D. et al Verdant Power Inc.
Jun 22, 2022
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Performance data for an axial-flow turbine with passive adaptive blades
To support the development of simulation tools for passive adaptive turbine rotors, an experimental data set from a laboratory-scale axial-flow turbine with passive adaptive blades is provided. The 0.45-meter diameter turbine was tested in the Alice C. Tyler Flume at the Universit...
Van Ness, K. et al University of Washington
May 01, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
UMass 2-Body WEC Techno-Economic Assessment
The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
LCOE Baseline for RME Surge WEC Device
This submission includes all the data to support an LCOE baseline assessment for the Resolute Marine Energy (RME) Surge WEC device.
Previsic, M. et al Re Vision Consulting
Jul 19, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible