OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 401 - 425 of 439.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Topics
Signature Projects
Collection Method
Data Type
"Wave-to-Wire Optimal Control"×

Advanced TidGen Power System LCOE Calculations and System Overview

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
4 Resources
0 Stars
Publicly accessible

Design of High-Deflection Foils MHK Applications FEA models

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Oct 01, 2021
3 Resources
0 Stars
Publicly accessible

TEAMER: Tidal Turbine Test, Downeast Turbines, July 12, 2021

Downeast Turbines tested a tidal turbine prototype with novel rotor/channel system and lateral effluent discharge apparatus (LEDA), during five days of testing in the flume at Alden Lab. Three days of testing (July 12-14, 2021) focused on turbine power metrics of torque and rpm, w...
McBride, G. Downeast Turbines
Mar 26, 2022
6 Resources
0 Stars
Publicly accessible

ALFA MHK Biological Monitoring Stationary Deployment South Energy Test Site, Newport, Oregon

Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary pr...
Horne, J. Northwest National Marine Renewable Energy Center
Oct 01, 2016
7 Resources
0 Stars
Publicly accessible

ALFA Shared Autonomy Manipulation Data with a Seabotix vLBV300

This report outlines marine field demonstrations for manipulation tasks with a semi-Autonomous Underwater Vehicle (sAUV). The vehicle is built off a Seabotix vLBV300 platform with custom software interfacing it with the Robot Operating System (ROS). The vehicle utilizes an inertia...
Hollinger, G. and Lawrance, N. Oregon State University
Jun 19, 2017
2 Resources
0 Stars
Publicly accessible

Sub-Scale Stage 1 Magnetic Gear for a Marine Hydrokinetic Generator

The goal of this project is to design, fabricate, and test a hermetically sealed 50 kilowatt (kW) multistage magnetically geared generator (MGG). In order to reduce risk, a sub-scale 5kW multistage MGG was first built. This project will benefit MHK device developers by providing a...
Bird, J. Portland State University
May 12, 2022
5 Resources
0 Stars
Awaiting release

Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology

The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible

Design of high deflection foils for MHK applications CFD files

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other...
Barrington, M. and McEntee, J. Ocean Renewable Power Company
Jun 01, 2021
5 Resources
0 Stars
Publicly accessible

TEAMER: Tidal Currents in San Juan Archipelago, Washington

Re-analyzed acoustic Doppler current profiler (ADCP) data originally collected by NOAA CO-OPS (Center for Operational Oceanographic Products and Services) and equivalent point data from Pacific Northwest National Laboratory's FVCOM (Finite Volume Community Ocean Model) model of th...
Polagye, B. et al University of Washington
Dec 15, 2022
3 Resources
0 Stars
Publicly accessible

20 Year Daily Average Modeled Velocity and Discharge for Openwater Season at Five Communities on Kuskokwim River, Alaska

This dataset includes modeled velocity and discharge at five communities in the middle Kuskokwim River region: Aniak, Chuathbaluk, Crooked Creek, Red Devil and Stony River. Modeled velocities and discharge represent daily averages calculated for the openwater season (OWS) from Jun...
Brown, E. et al University of Alaska Fairbanks
Dec 02, 2022
9 Resources
0 Stars
Publicly accessible

RANS Simulation RRF of Single Full Scale DOE RM1 MHK Turbine

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry i...
Javaherchi, T. et al University of Washington
Apr 10, 2013
2 Resources
0 Stars
Publicly accessible

RANS Simulation RRF of Single Lab-Scaled DOE RM1 MHK Turbine

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same p...
Javaherchi, T. et al University of Washington
Apr 15, 2014
3 Resources
0 Stars
Publicly accessible

ALFA Field Testing of a Dual Sonar System for Detecting Woody Debris

Field testing of a dual sonar system for detecting woody debris in natural settings was conducted at the Tanana River Test Site (TRTS) in Nenana, AK between 8/26 and 9/23, 2015. The TRTS is approximately 65 miles south of Fairbanks and is well suited for testing hydrokinetic energ...
Kasper, J. University of Alaska Fairbanks
Apr 11, 2022
16 Resources
0 Stars
Publicly accessible

RANS Simulation VBM of Single Full Scale DOE RM1 MHK Turbine

Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this...
Javaherchi, T. and Aliseda, A. University of Washington
Apr 10, 2013
8 Resources
0 Stars
Publicly accessible

RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK Turbine

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same po...
Javaherchi, T. et al University of Washington (NNMREC)
Apr 15, 2014
8 Resources
0 Stars
Publicly accessible

TidGen: Single Turbine Subsystem (STS) Device Installation, Deployment, Retrieval, and Removal Procedures

This document provides the process details for installation of the Single Turbine Subsystem (STS) device from the assembly laydown location to the deployed location in Eastport, ME. These procedures will be conducted not only during initial deployment, but also during maintenance ...
Martin, T. Ocean Renewable Power Company
Feb 20, 2023
1 Resources
0 Stars
Awaiting release

Single Turbine Test Procedure and Data Acquisition Plan

This document describes the test procedure and the data acquisition plan for the Single Turbine Subsystem (STS) testing that is part of the Advanced TidGen Power System. The goal of the Advanced TidGen Power System is to demonstrate a commercially viable tidal power system, integr...
Hayes, N. ORPC Inc.
Apr 13, 2022
1 Resources
0 Stars
Awaiting release

Advanced TidGen Power System ProteusDS Version 2.43.5 Files

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible

Single Turbine Test Procedure and Data Acquisition Plan, Rev. B

The TidGen80 Single Turbine System (TD80-STS or STS) will be used to test the power production performance of a single turbine in a tidal environment. Installation of the STS will also test the deployment system and methods for the full scale TD80. This document describes the te...
Hayes, N. ORPC Inc.
Apr 13, 2022
1 Resources
0 Stars
Awaiting release

Pacific Marine Energy Center Laser Doppler Velocimetry Commissioning

First commissioning data for the new laser doppler velocimetry (LDV) system that will be used at the Tyler Flume at the University of Washington. The LDV system can measure three components of velocity at a point. For this dataset the three components were operated in non-coincide...
Williams, O. University of Washington (NNMREC)
Mar 01, 2022
1 Resources
0 Stars
Publicly accessible

Admiralty Inlet, WA Tidal Current Turbulence

Tripod and mooring data using acoustic doppler velocimeter (ADV) and acoustic doppler current profiler (ADCP) of tidal turbulence. When using the data, please cite the J. Oceanic Eng. paper included in this submission, and please contact Jim Thomson prior to submitting publication...
Thomson, J. Northwest National Marine Renewable Energy Center
Feb 01, 2011
2 Resources
0 Stars
Publicly accessible

TidGen MHK Generator Composite Fatigue Analysis Procedure

A procedure was described for performing a fatigue analysis of composite foils for an MHK generator. The steps included generating load data, S-N (Stress versus Number of cycles to failure) diagrams through fatigue testing, cycle counts, damage versus load, and cumulative damage. ...
Krumpe, A. ORPC Inc.
Apr 14, 2020
2 Resources
0 Stars
Publicly accessible

Stage 2 Full-Scale Rotary Magnetic Gear for a Marine Hydrokinetic Generator

The goal of this project is to design, fabricate, and test a hermetically sealed 50 kilowatt (kW) multistage magnetically geared generator (MGG). This project will benefit MHK device developers by providing an MHK PTO that overcomes the reliability concerns of the mechanical gears...
Bird, J. Portland State University
Jul 30, 2021
4 Resources
0 Stars
Awaiting release

ALFA Coupled Computational Fluid Dynamics/Discrete Element Method Modeling System

The HDIS/COUPi discrete element method modeling system was used to simulate the interaction between various debris and the Research Debris Diversion Platform (RDDP)
DUVOY, P. University of Alaska Fairbanks
Nov 29, 2016
11 Resources
0 Stars
Publicly accessible

Tanana River Transects September 2010

As part of the initial site investigation for the Tanana River near Nenana, Alaska, a set of transects was completed on September 23rd, 2010. Similar to the one done on August 10th, 2010. This data was collected with a Rio Grande 1200 Teledyne ADCP the same year the initial bathym...
DUVOY, P. University of Alaska Fairbanks
Sep 23, 2010
2 Resources
0 Stars
Publicly accessible
<< Previous12131415161718Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service