Search MHK Data
Showing results 51 - 75 of 81.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
M3 Wave DMP/APEX WEC 1:10 Scale Preliminary Tank Test Plan
This is a preliminary test plan for testing of the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX," at Hinsdale Wave Research Laboratory at Oregon State University. Additional logistical details and instrumentation specifics will be added as engi...
Delos-Reyes, M. and Morrow, M. M3 Wave
Feb 23, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Translated System Requirements into PTO Design Requirements (in addition to Component-level metrics) for the HydroAir Power Take Off System
Includes Maximum Cost, Critical Dimensions and Weights, Damping Curve, Rotor Speed Profile Changes, Mechanical Power for a given pressure and airflow, Turbine rpm range and power, Generator input torque, Torque speed curves/profile, Generated electrical power for given input torqu...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Triton-C WEC Numerical and LCOE Content Models (DDP)
These are the Content Models for the Triton-C multi-mode point absorber WEC based on the Detailed System Design Package (DDP), including WEC Numerical and LCOE Content Models.
Stinson, K. and Mundon, T. Oscilla Power, Inc.
Dec 21, 2020
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
Triton-C Point Absorber Preliminary System Design Package
Preliminary System Design Package for the Triton-C WEC, including a report and CAD drawings pertaining to the overall preliminary design, system arrangement, surface float hull, and surface float arrangement.
Mundon, T. Oscilla Power, Inc.
Dec 01, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Verdant Power Gen5 KHPS and TriFrame System Content Models
This submission includes the Component Content Model for Verdant Power TriFrame and the System Content Model for Verdant Power TriFrame + 3 Gen5 KHPS Turbines. The TriFrame is the foundation component of the system, which consists of a TriFrame + 3 Gen5 KHPS Turbines (TF+3T).
Corren, D. et al Verdant Power Inc.
Jul 05, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Model and experimental validation of ocean kite dynamics and controls
This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission.
...
Vermillion, C. et al North Carolina State University
Mar 01, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, Quarterly Technical Report
Quarterly Technical Report for "Advanced Controls for the Multi-pod Centipod WEC device" describing project parameters, organization, task activities, accomplishments, and conclusions. See other submissions under this DOE project for economic viability, design geometry, and modeli...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TidGen MHK Generator Composite Fatigue Analysis Procedure
A procedure was described for performing a fatigue analysis of composite foils for an MHK generator. The steps included generating load data, S-N (Stress versus Number of cycles to failure) diagrams through fatigue testing, cycle counts, damage versus load, and cumulative damage. ...
Krumpe, A. ORPC Inc.
Apr 14, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX WEC Wave Tank Testing Final Raw Dataset
Complete dataset from wave tank testing for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX". Subdirectories include Readme files where appropriate to aid in navigation.
Morrow, M. et al M3 Wave
Sep 01, 2017
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
TEAMER: Experimental performance characterization of a shrouded axial-flow turbine
Sitkana has developed a shrouded hydrokinetic turbine with a modular, low-cost design that can be scaled to meet the needs of remote communities. With technical support from the University of Washington, Sitkana sought to experimentally characterize the mechanical power and struct...
McMullan, L. et al University of Washington
Oct 20, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Advanced Control Systems for Wave Energy Converters
This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture eff...
Scruggs, J. et al Resolute Marine Energy, Inc.
Jan 30, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Northwest National Marine Renewable Energy Center, OR Project Plans
Plans for Northwest National Marine Renewable Energy Center (NNMREC) Project.
Mobile Ocean Test Berth (MOTB) plans
PMEC-SETS Plans
Hellin, D. Northwest National Marine Renewable Energy Center
Jun 29, 2016
20 Resources
0 Stars
Publicly accessible
20 Resources
0 Stars
Publicly accessible
Advanced TidGen Power System Preliminary IO&M and Testing Plan
The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Triton-C WEC Detailed System Design Package
The Detailed System Design Package for the Triton-C WEC, including a report and CAD drawings pertaining to the overall preliminary design, system arrangement, surface float hull, and surface float arrangement.
D6 presents an overview of the final detailed design package for the T...
Stinson, K. et al Oscilla Power, Inc.
Nov 02, 2020
5 Resources
0 Stars
Awaiting release
5 Resources
0 Stars
Awaiting release
StingRAY Updated WEC Risk Registers
Updated Risk Registers for major subsystems of the StingRAY WEC completed according to the methodology described in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. and Ondusko, M. Columbia Power Technologies, Inc.
Jun 27, 2018
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
SeaRAY WEC Preliminary Design and Test Planning
The SeaRAY is a deployable power system for maritime sensors, monitoring equipment, communications, unmanned underwater vehicles, and other similar payloads. This project is to design, deliver, and test a prototype low-power WEC that lowers the total cost of ownership and provides...
Hammagren, E. et al Columbia Power Technologies, Inc.
May 18, 2020
4 Resources
0 Stars
Awaiting release
4 Resources
0 Stars
Awaiting release
WEC Controls Optimization Final Report
The over-arching project objective is to fully develop and validate optimal controls frameworks that can subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices represent a fundamental building block for WEC designers that must be cons...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
H3 StingRAY Final Design and Technical Report
The goal of this Project was to develop a standards-compliant, fabrication-ready design of Columbia Power Technologies' (C-Power) next-generation wave energy converter (WEC), the StingRAY H3. The H3 is a design iteration of C-Power's StingRAY WEC and is intended for electrical pow...
Prudell, J. and Lenee-Bluhm, P. Columbia Power Technologies, Inc.
Sep 15, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Additional Degree of Freedom for WEC Model
'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
StingRAY Failure Mode, Effects and Criticality Analysis: WEC Risk Registers
Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficient...
Rhinefrank, K. Columbia Power Technologies, Inc.
Jul 25, 2016
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
2023 Risk Management Plan and Register for Low-Power WEC for Non-Grid Applications
This is an updated risk management plan and risk register for the design, build and test of a novel, remote, low-power wave energy converter (WEC) for non-grid applications. This Columbia Power Technologies project seeks to develop a prototype low-power WEC that lowers the total c...
Hammagren, E. et al Columbia Power Technologies, Inc.
Jun 14, 2023
17 Resources
0 Stars
Awaiting release
17 Resources
0 Stars
Awaiting release
TEAMER: FOSWEC Mooring Modelling and Analysis, Post Access Report and Data
Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
13 Resources
0 Stars
Curated
13 Resources
0 Stars
Curated
CalWave Reports and Plans for xWave Device Demonstration at PacWave South Site
CalWave has developed a submerged pressure differential type Wave Energy Converter (WEC) architecture called xWave. The single body device oscillates submerged, is positively buoyant, and taut moored to the sea floor and integrates novel features such as absorber submergence depth...
Boerner, T. et al CalWave Power Technologies Inc.
Feb 29, 2024
6 Resources
0 Stars
Awaiting release
6 Resources
0 Stars
Awaiting release
TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System
Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Risk Management Plan and Risk Register for Design Low-Power Wave Energy Converter for Non-Grid Applications
Risk Registers for major subsystems completed according to the methodology described in the Risk Management Plan [DE-EE0008627 D1.2 Risk Management Plan PD v1.1 07-19-2019.pdf], also included here.
Amon, E. Columbia Power Technologies, Inc.
Jul 19, 2019
17 Resources
0 Stars
Awaiting release
17 Resources
0 Stars
Awaiting release