Search MHK Data
Showing results 1 - 19 of 19.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
LCOE Content Model for the Heaving Point Absorber Buoy
This is the LCOE analysis spreadsheet and content model for the heaving point absorber buoy developed for controls purposes. The cost assessment was done on a wave-farm of 100-units.
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Jul 14, 2017
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
LCOE Baseline for Wave Carpet WEC Device
This is an LCOE (levelized cost of energy) baseline assessment for the Wave Carpet.
Previsic, M. et al Re Vision Consulting
Jul 26, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
StingRAY H1 Humboldt Cost Breakdown Structure
Columbia Power LCOE (levelized cost of energy) Model for the Stingray H1 at the DOE Reference Site of Humboldt, CA. The model is integrated with and reports LCOE from DOE Cost Breakdown Structure
Rhinefrank, K. Columbia Power Technologies, Inc.
Mar 06, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
MHK Levelized Cost of Energy (LCOE) Guidance and Techo Economic Analysis Materials
Useful information and tools for calculating the Levelized Cost of Energy (LCOE) and MHK Cost Breakdown Structure. Includes a structure for calculating the capital expenditures and operating costs of a marine energy technology or device, reference resource data for both wave and ...
Jenne, S. and Baca, E. National Renewable Energy Laboratory
Nov 08, 2019
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
TidGen LCOE Workbooks
Workbooks showing Annualized Energy Production, Cost Breakdown Structure, Levelized Cost of Electricity for DOE Reference Tidal Project
1) Baseline TidGen Power System
2) TidGen Power System with the application of Advanced Controls
3) Advanced TidGen Power System with several enh...
McEntee, J. Ocean Renewable Power Company
Mar 21, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
LCOE Baseline for OE Buoy WEC Device
Capex numbers are in $/kW, Opex numbers in $/kW-yr. Cost Estimates provided herein are based on concept design and basic engineering data and have high levels of uncertainties embedded. This reference economic scenario was done for a very large device version of the Ocean Energy ...
Previsic, M. et al Re Vision Consulting
Jul 26, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Advanced Control Systems for Wave Energy Converters
This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture eff...
Scruggs, J. et al Resolute Marine Energy, Inc.
Jan 30, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Verdant Power Gen5 KHPS and TriFrame System Content Models
This submission includes the Component Content Model for Verdant Power TriFrame and the System Content Model for Verdant Power TriFrame + 3 Gen5 KHPS Turbines. The TriFrame is the foundation component of the system, which consists of a TriFrame + 3 Gen5 KHPS Turbines (TF+3T).
Corren, D. et al Verdant Power Inc.
Jul 05, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: MADWEC Techno-Economic Analysis
The objective of this project was for the facility to conduct a techno-economic assessment (TEA) of the Maximal Asymmetric Drag Wave Energy Converter (MADWEC), developed by the University of Massachusetts Dartmouth (UMass Dartmouth). MADWEC is used for powering remote monitoring a...
Ortega, T. and Baca, E. National Renewable Energy Laboratory
Mar 08, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
WEC Controls Optimization Final Report
The over-arching project objective is to fully develop and validate optimal controls frameworks that can subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices represent a fundamental building block for WEC designers that must be cons...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, Resultant LCOE
Project resultant levelized cost of energy (LCOE) model after implementation of model predictive control (MPC) controller. Contains annual energy production (AEP) data, cost breakdown structure (CBS), model documentation, and the LCOE content model. This is meant for comparison wi...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, Baseline LCOE
Project baseline levelized cost of energy (LCOE) model for the Centipod WEC containing annual energy production (AEP) data, a cost breakdown structure (CBS), model documentation, and the LCOE content model. This baseline was built for comparison with the resultant LCOE model, buil...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX Model Baseline LCOE
This is the raw LCOE model used to establish baseline performance for the M3 Wave DMP/APEX submerged mid-column pressure differential WEC. The model includes initial capital cost, levelized replacement cost, levelized operations and maintenance cost, and net annual energy producti...
Morrow, M. M3 Wave
Feb 28, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
StingRAY System and LCOE Content Models
DOE System and LCOE (levelized costs of energy) Content Models completed for a utility-scale Stingray WEC.
Rhinefrank, K. Columbia Power Technologies, Inc.
Mar 06, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Modular RivGen LCOE Content Model
The Modular RivGen LCOE Content Model contains estimates of levelized cost of energy (LCOE) for three array configurations operating in a theoretical river environment. The LCOE is distinguished by the CapEx, OpEx, and annual energy production and capture for each river environment.
Tyler, R. and Obomsawin, T. Ocean Renewable Power Company
Dec 15, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
LCOE and Baseline Data for ORPC's RivGen 1.F River Power System
Base data and documentation of LCOE calculations for ORPC's RivGen 1.F Power System, demonstrated in the Kvichak River at Igiugig, Alaska in 2015.
Salmon, A. Igiugig Village Council
Oct 31, 2016
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
LCOE Baseline for RME Surge WEC Device
This submission includes all the data to support an LCOE baseline assessment for the Resolute Marine Energy (RME) Surge WEC device.
Previsic, M. et al Re Vision Consulting
Jul 19, 2017
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
UMass 2-Body WEC Techno-Economic Assessment University of Michigan
The University of Massachusetts (UMass) is developing a 2-body wave energy converter (WEC) device that is converting mechanical power into electricity using a mechanical motion rectifier that allows the system to couple to a flywheel. UMass has completed numerical modeling, wave t...
Previsic, M. Re Vision Consulting
Nov 19, 2024
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
M3 Wave DMP/APEX WEC Projected LCOE
Projected LCOE model for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX," based on information gained during project performance.
Morrow, M. and Delos-Reyes, M. M3 Wave
Aug 01, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible