OpenEI: Energy Information
  • Marine and Hydrokinetic Data Repository
  • My User
    • Sign Up
    • Login
MHK logo
  • Data
    • View All Submissions
    • Data Lakes
    • Content Models
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact MHKDR Help
  • About
  • Search

Search MHK Data

Showing results 26 - 50 of 58.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Topics
Signature Projects
Collection Method
Data Type
"mass of water turbine"×
TEAMER×

OSU Spar2 Drifting Hydrophone TEAMER Open Water Testing

This acoustic data set was collected during TEAMER Open Water support testing of a drifting hydrophone system under development by Oregon State University. This drifting hydrophone system will be used for project compliance measurements of underwater noise at the PacWave facility ...
Pacific Northwest National Laboratory
Sep 14, 2023
71 Resources
0 Stars
In progress

TEAMER: Numerical Model of IProTech PIP WEC Device

iProTech PIP wave energy converter (WEC) is a slack moored, single hull device with no moving parts in the water, joints or bearings. This submission includes data of the simulation, reports, and code for the iProTech PIP (WEC) project. The organization of the data included in the...
Ogden, D. et al IProTech
Nov 02, 2021
2 Resources
0 Stars
Publicly accessible

TEAMER: Ocean Energy Sandia WEC Simulation Results

Computational fluid simulations for wave energy converters and supporting materials from Ocean Energy's WEC Buoy TEAMER RFTS 1 (request for technical support) project in collaboration with Sandia National Laboratories. Each file includes images and video of simulation along with t...
Lewis, T. and Chartrand, C. Ocean Energy
Aug 01, 2022
7 Resources
0 Stars
Awaiting release

TEAMER: OSU X Hinsdale & Sandia LUPA System Identification

This submission is part of a TEAMER testing campaign through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023. The Laboratory Upgrade...
Robertson, B. et al Oregon State University
Oct 19, 2023
4 Resources
0 Stars
Curated

TEAMER: OSU X Hinsdale & Sandia LUPA Uncertainty Testing

This processed data is from TEAMER testing through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023. The Laboratory Upgrade Point Abs...
Robertson, B. et al Oregon State University
Oct 19, 2023
6 Resources
0 Stars
Curated

TEAMER: Wave and Current Energy Converter Modeling Workshop Materials

This dataset contains the full set of training materials used in a marine hydrokinetic (MHK) modeling workshop conducted by Sandia National Laboratories for the University of Alaska Fairbanks, funded through the U.S. Department of Energy's TEAMER program. The workshop focused on t...
McWilliams, S. et al Sandia National Laboratories
Apr 18, 2025
7 Resources
0 Stars
Curated

TEAMER: FOSWEC Mooring Modeling and Analysis, Post Access Report and Data

Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
10 Resources
0 Stars
Publicly accessible

TEAMER: Experimental Characterization of a Laboratory-Scaled Oscillating Surge Wave Energy Converter

This data is a result of an experimental campaign to characterize the hydrodynamics and performance of a laboratory-scale oscillating surge wave energy converter (OSWEC). The device was 85 cm wide, 1.4 meters tall, and 14 cm thick and was tested in the Sea Wave Environmental Lab (...
Lydon, B. et al University of Washington
Apr 05, 2024
9 Resources
0 Stars
Curated

TEAMER: Additional Degree of Freedom for WEC Model

'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Awaiting release

TEAMER: Numerical Analysis of a Novel Nearshore at-surface WEC

This dataset comprises of raw numerical simulation data conducted on a novel nearshore at-surface wave energy converter (WEC). The testing aimed and was intended to provide a calibration then optimization regime through numerical analysis. This project is part of the TEAMER RFTS ...
Villarreal, A. et al Laminar Scientific Inc.
Jan 15, 2024
1 Resources
0 Stars
Curated

TEAMER: Maximal Asymmetric Drag Wave Energy Converter

Boundary element method (BEM) and WEC-Sim analysis of UMass Dartmouth's maximal asymmetric drag wave energy converter (MADWEC), including its tethered ballast system and PTO (power take-off). This project is part of the TEAMER RFTS 6 (request for technical support) program.
MacDonald, D. et al University of Massachusetts Dartmouth
Aug 18, 2023
2 Resources
0 Stars
Awaiting release

TEAMER: A Tow Body Optical Camera System

Archive consists of design drawings, assembly instructions, and bill of materials (BOM) for a Igiugig Village Council (IVC)/Ocean Renewable Power company (ORPC) tow body camera system for underwater environmental monitoring using optical cameras. This work was conducted by the Uni...
Joslin, J. et al University of Washington
Apr 30, 2021
6 Resources
1 Stars
Publicly accessible

TEAMER: CalWave xWave New Technology Qualification and Path to Certification Final Report

CalWave is developing a wave energy converter (WEC) called xWave, which operates fully submerged and is classified as a submerged pressure differential type. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multiple deg...
Petcovic, D. and Zhang, S. CalWave Power Technologies Inc.
Oct 31, 2022
2 Resources
0 Stars
Publicly accessible

TEAMER: Technical Support for Aquantis (Materials): CRD-21-17762-0

The Aquantis Tidal Power Tug is a unique synthesis of best-available technologies and materials configured as a novel spar vessel to create an optimal platform for tidal stream energy conversion. The Power Tug utilizes an upstream-facing horizontal, 2-bladed rotor. To drive down c...
Swales, H. et al Aquantis, Inc.
Oct 17, 2024
1 Resources
0 Stars
In curation

TEAMER: Investigation of Alternate Material Design Methods in WPS Ballast and Hull Systems

Included here are data and results from a study on the use of alternative materials in a floating, two-body Wave Power System (WPS). This study was focused on introduction of fiber-reinforced polymer and concrete in structural elements of the subject WPS, as well as the design and...
Veilleux, M. et al Cardinal Engineering
Apr 22, 2025
2 Resources
0 Stars
Curated

TEAMER: Electrically Engaged Undulation System for Unmanned Underwater Vehicles

This TEAMER RFTS 1 (Request for Technical Support) project supported the flume tank testing of a long range, high endurance unmanned underwater vehicle (UUV) to monitor maritime space. Today, battery-powered remotely operated vehicles (ROVs) lack the duration to make persistent, w...
Lu, K. and Datla, R. Pyro-E
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible

TEAMER: Techno-Economic Assessment of the Crestwing WEC Device

This dataset contains a report and an Excel file documenting a techno-economic model developed to assess the Crestwing wave energy converter (WEC), an attenuator-type device composed of two hinged rectangular barges. Funded by TEAMER and carried out by Re Vision Consulting, the st...
Previsic, M. Re Vision Consulting
Mar 14, 2025
3 Resources
0 Stars
Curated

TEAMER: Results of Investigating Structural Design Concepts and Alternative Materials for a Wave Power System

Included here are materials from a study on the design of a three-body Wave Energy Converter (WEC) utilizing a heave plate, dual Power Take Offs (PTOs), and single point mooring. A material trade study has been conducted to evaluate the effects of introducing various metallic and ...
Whitney, C. et al Cardinal Engineering
Apr 27, 2024
4 Resources
0 Stars
Awaiting release

TEAMER: MADWEC Techno-Economic Analysis

The objective of this project was for the facility to conduct a techno-economic assessment (TEA) of the Maximal Asymmetric Drag Wave Energy Converter (MADWEC), developed by the University of Massachusetts Dartmouth (UMass Dartmouth). MADWEC is used for powering remote monitoring a...
Ortega, T. and Baca, E. National Renewable Energy Laboratory
Mar 08, 2024
2 Resources
0 Stars
Publicly accessible

TEAMER: WEC-Sim Modeling of Laminar Scientific Patented Seesaw Wave Energy Converter

Laminar Scientific's patented nearshore seesaw wave energy converter has several features assessed in this study utilizing the Wave Energy Converter SIMulator (WEC-Sim) Facility. One of these features is the ability to change spacing between two spherical floats of the seesaw to a...
Iyer, N. et al Laminar Scientific Inc.
Nov 21, 2024
2 Resources
0 Stars
Publicly accessible

TEAMER: Drifting Hydrophone System Block Diagram and Pre-Amplifier Calibrations

This data release is part of TEAMER RFTS 2, where the Cooperative Institute for Marine Resources Studies (CIMRS) at Oregon State University is performing hardware and software development and integration of four newly designed drifting hydrophone systems for underwater noise measu...
Turnbull, J. et al Pacific Marine Energy Center (PMEC)
Feb 26, 2024
3 Resources
0 Stars
Curated

TEAMER: Ocean Survivability Analysis for a WEC Post-Access Report Data, Newport, OR

E-Wave Technologies LLC worked with the American Bureau of Shipping for the project of ocean survivability analysis of a wave energy converter that powers marine aquaculture. The performance period extended from 9/15/2021 to 6/30/2022 off the coast of Newport, Oregon. The data and...
Lou, J. et al E-Wave Technologies LLC
Jun 30, 2022
55 Resources
0 Stars
In curation

TEAMER: Numerical Modeling of WECs to Support OES Task 10

This submission contains the files for reproducing the waves only and sphere test article simulations for the experimental setup (three different wave conditions) associated with the Teamer Request for Technical Support 9 (RFTS 9) fluid dynamics simulations to support the Ocean En...
Meuris, B. et al Sandia National Laboratories
Sep 23, 2024
1 Resources
0 Stars
Publicly accessible

TEAMER: Numerical Modeling and Optimization of the iProTech Pitching Inertial Pump (PIP) Wave Energy Converter (WEC)

This project focused on developing an automated workflow to evaluate and optimize the iProTech Pitching Inertial Pump (PIP) wave energy converter (WEC) using open-source Python packages and the MATLAB/Simulink tool, WEC-Sim. The process involved parameterizing key design variables...
Wynn, N. et al National Renewable Energy Laboratory
Apr 11, 2024
1 Resources
0 Stars
Publicly accessible

TEAMER: Supporting model output files for Environmental Compliance Framework for Floating Tidal Turbines, Cook Inlet, AK

Orbital Marine Power (Orbital) is seeking to deploy their floating tidal technology in US waters and has considered the possibility of deploying in temperate waters including the Pacific Northwest (PNW) and the Western Passage, Maine. It has become apparent that some of the most p...
Wang, T. et al Pacific Northwest National Laboratory
Mar 01, 2023
5 Resources
0 Stars
Publicly accessible
<< Previous123Next >>
  • About the MHKDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The MHKDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Marine and Hydrokinetic Power Program.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service