Search MHK Data
Showing results 51 - 75 of 245.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
TEAMER: FOSWEC Mooring Modeling and Analysis, Post Access Report and Data
Floating oscillating surge wave energy converters (FOSWECs) offer several advantages over bottom-hinged oscillating surge wave energy converters, including large wave potential at deep-water sites with fewer permitting and environmental concerns outside territorial waters. As a te...
Housner, S. et al Virginia Tech
Jun 14, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
WEC Controls Optimization Final Report
The over-arching project objective is to fully develop and validate optimal controls frameworks that can subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices represent a fundamental building block for WEC designers that must be cons...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
ALFA Non-linear Ocean Waves and PTO Control Strategy
Data from Advanced Laboratory and Field Arrays (ALFA) Non-linear Ocean Waves and Power Take-Off (PTO). Control Strategy project conducted at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in 2019/2020. Contains two zip files (ALFANL.zip, ALFANL2.zip)...
Bosma, B. et al Pacific Marine Energy Center (PMEC)
Oct 28, 2019
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Numerical Analysis of Two-Body Floating Attenuator WEC (Waveberg)
This TEAMER RFTS 9 award was used to develop a numerical model of the Waveberg floating attenuator wave energy converter (WEC) using the Wave Energy Converter-Simulator (WEC-Sim). The Waveberg is designed to generate power in the smaller waves (for wave heights of 1 2 meters) pred...
Wegener, P. DBA Waveberg Development
Mar 26, 2025
16 Resources
0 Stars
In curation
16 Resources
0 Stars
In curation
TEAMER: Biofouling Analysis for Wave Energy Piston Design Load Cell Data
Biofouling and corrosion are a major concern for all ocean-deployed components, especially when mechanical motion is involved. Triton has developed the concept of a biofouling mitigation seal as part of the piston sealing assembly for the Triton Wave Energy Converter (TSI-WEC). Th...
Robertson, T. et al Triton Systems, Inc.
Nov 01, 2021
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Advanced WEC Dynamics and Controls, Test 1
Numerous studies have shown that advanced control of a wave energy converter's (WEC's) power take off (PTO) can provide significant increases (on the order of 200-300%) in WEC energy absorption. Transitioning these control approaches from simplified paper studies to application in...
Coe, R. Sandia National Laboratories
Feb 26, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
CalWave Deep Ocean Basin Test Plan, Ireland
Documentation of CalWave's wave tank test plan (including test setup and overview) at the Deep Ocean Basin at Ringaskiddy, Cork, Ireland. Experimental tank testing of scaled prototype units will be conducted repeatedly throughout the design process to verify device performance for...
Boerner, T. et al CalWave Power Technologies Inc.
Oct 31, 2022
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
National Marine Renewable Energy Center Upgrades LUPA
The data provided is part of a power take off damping optimization study. The power take off damping coefficient was swept from 0 to approximately 7000 N/m/s during a single regular wave test with a real time control of the motor/generator. The generated power from the LUPA (Lab U...
Robertson, B. et al Oregon State University
Oct 12, 2022
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
TEAMER: Experimental Characterization of a Laboratory-Scaled Oscillating Surge Wave Energy Converter
This data is a result of an experimental campaign to characterize the hydrodynamics and performance of a laboratory-scale oscillating surge wave energy converter (OSWEC). The device was 85 cm wide, 1.4 meters tall, and 14 cm thick and was tested in the Sea Wave Environmental Lab (...
Lydon, B. et al University of Washington
Apr 05, 2024
9 Resources
0 Stars
Curated
9 Resources
0 Stars
Curated
Development of Classification Systems for Wave Energy Resources and WEC Technologies
The submission includes wave resource classification reports, summary of classification statistics and regional trends, and data files with classification statistics for selected sites for extreme significant wave height. Two conference papers were uploaded that include classifica...
Neary, V. et al Sandia National Laboratories
Jun 30, 2017
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
TEAMER: OSU X Hinsdale & Sandia LUPA Uncertainty Testing
This processed data is from TEAMER testing through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023. The Laboratory Upgrade Point Abs...
Robertson, B. et al Oregon State University
Oct 19, 2023
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
Centipod WEC, Advanced Controls, Quarterly Technical Report
Quarterly Technical Report for "Advanced Controls for the Multi-pod Centipod WEC device" describing project parameters, organization, task activities, accomplishments, and conclusions. See other submissions under this DOE project for economic viability, design geometry, and modeli...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, Baseline LCOE
Project baseline levelized cost of energy (LCOE) model for the Centipod WEC containing annual energy production (AEP) data, a cost breakdown structure (CBS), model documentation, and the LCOE content model. This baseline was built for comparison with the resultant LCOE model, buil...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Risk Management Plan and Risk Register for Design Low-Power Wave Energy Converter for Non-Grid Applications
Risk Registers for major subsystems completed according to the methodology described in the Risk Management Plan [DE-EE0008627 D1.2 Risk Management Plan PD v1.1 07-19-2019.pdf], also included here.
Amon, E. Columbia Power Technologies, Inc.
Jul 19, 2019
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, Resultant LCOE
Project resultant levelized cost of energy (LCOE) model after implementation of model predictive control (MPC) controller. Contains annual energy production (AEP) data, cost breakdown structure (CBS), model documentation, and the LCOE content model. This is meant for comparison wi...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Focusing Wave Energy for Wave Energy Converter Applications
Wave tank tests at Stevens Institute of Technology quantified the ability of near-surface platforms to concentrate wave energy over the platform.
Due to the instantaneous change in water depth, mass, energy, and power are conserved in this process. The energy and power concentrat...
Raftery, M. Stevens Institute of Technology
Aug 10, 2010
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX WEC Final Technical Report
This project successfully developed methods for numerical modeling of sediment transport phenomena around rigid objects resting on or near the ocean floor. These techniques were validated with physical testing using actual sediment in a large wave tank. These methods can be applie...
Morrow, M. et al M3 Wave
May 31, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER: OSU X Hinsdale & Sandia LUPA System Identification
This submission is part of a TEAMER testing campaign through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023.
The Laboratory Upgrade...
Robertson, B. et al Oregon State University
Oct 19, 2023
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
HERO WEC 2024 Hydraulic Configuration Deployment Data
The following submission includes raw and processed data from the in water deployment of NREL's Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), in the form of parquet files, TDMS files, CSV files, bag files and MATLAB workspaces. This dataset was collected...
Jenne, S. et al National Renewable Energy Laboratory
Mar 14, 2024
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
TEAMER: Original HANNA Mono-Radial Turbine Post Access Report
Final report on a TEAMER RFTS 2 (request for technical support) study undertaken by Alden Research Laboratory for the Mono-radial turbine invented by John Clark Hanna DBA: Hanna Wave Energy Primary Drives. The study is a predictive numerical and CFD (computational fluid dynamics) ...
Hanna, J. Hanna Wave Energy Primary Drives
Mar 10, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
CalWave First Iterative PTO Description
This documents summarizes a preliminary first iterative design of a PTO device developed by CalWave. The document includes controls, hydraulic, and electric architectures from the first iteration of the CalWave PTO design that match requirements set out by the "CalWave Holistic PT...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
2023 Risk Management Plan and Register for Low-Power WEC for Non-Grid Applications
This is an updated risk management plan and risk register for the design, build and test of a novel, remote, low-power wave energy converter (WEC) for non-grid applications. This Columbia Power Technologies project seeks to develop a prototype low-power WEC that lowers the total c...
Hammagren, E. et al Columbia Power Technologies, Inc.
Jun 14, 2023
17 Resources
0 Stars
Awaiting release
17 Resources
0 Stars
Awaiting release
Evaluation of a Wave Powered Water Pump Performance by Ocean Field Testing and WEC-Sim Modeling
This submission from AMEC (the Atlantic Marine Energy Center) includes data from an ocean field deployment of a wave powered water pump in March 2023. The wave pump is an upweller device, designed to enhance macroalgal aquaculture.
The wave pump device was deployed off the coast ...
Kimball, C. et al University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Mar 21, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
TEAMER: Sandia and CalWave Torque Spring Assessment
Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type ...
Boerner, T. et al CalWave Power Technologies Inc.
Apr 01, 2022
3 Resources
0 Stars
Awaiting release
3 Resources
0 Stars
Awaiting release
MASK4 Test Campaign for Sandia WaveBot Device Dataset
This data and report details the findings from a wave tank test focused on production of useful work of a wave energy converter (WEC) device. The experimental system and test were specifically designed to validate models for power transmission throughout the WEC system. Additional...
Forbush, D. et al Sandia National Laboratories
Dec 25, 2023
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible