Search MHK Data
Showing results 1 - 25 of 51.
Show
results per page.
Order by:
Available Now:
Technologies
Topics
Signature Projects
Collection Method
Data Type
ALFA Biological Monitoring Density Values South Energy Test Site, Newport, Oregon
Density values from active acoustic measurements at South Energy Test Site. This data correspond to a bottom mounted upward-looking WBAT, deployed from April 19th to September 30th. Samples (175 pings) were collected hourly at 1Hz.
Horne, J. Northwest National Marine Renewable Energy Center
Apr 11, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
ALFA MHK Biological Monitoring Stationary Deployment South Energy Test Site, Newport, Oregon
Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project.
Data was subject to preliminary pr...
Horne, J. Northwest National Marine Renewable Energy Center
Oct 01, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Co-Design of Marine Energy Converters for Autonomous Underwater Vehicle Docking and Recharging Software and Data
Software and testing data from the OH Hinsdale Wave lab for DOE-funded project on Co-Design of Marine Energy Converters for Autonomous Underwater Vehicle Docking and Recharging. This project will perform foundational research and testing to accelerate the sector-wide development a...
Hollinger, G. et al Oregon State University
Oct 26, 2022
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
ALFA Field Testing of a Dual Sonar System for Detecting Woody Debris
Field testing of a dual sonar system for detecting woody debris in natural settings was conducted at the Tanana River Test Site (TRTS) in Nenana, AK between 8/26 and 9/23, 2015. The TRTS is approximately 65 miles south of Fairbanks and is well suited for testing hydrokinetic energ...
Kasper, J. University of Alaska Fairbanks
Apr 11, 2022
16 Resources
0 Stars
Publicly accessible
16 Resources
0 Stars
Publicly accessible
CalWave First Iterative PTO Description
This documents summarizes a preliminary first iterative design of a PTO device developed by CalWave. The document includes controls, hydraulic, and electric architectures from the first iteration of the CalWave PTO design that match requirements set out by the "CalWave Holistic PT...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
2 Resources
0 Stars
Awaiting release
2 Resources
0 Stars
Awaiting release
CalWave WEC Holistic PTO Design
This project aims to advance the Technology Readiness Level (TRL) of CalWave’s commercial scale Power Take-Off (PTO) subsystem through further increasing the level of coupling in physical PTO and concurrent controls design. This is achieved by incorporating a systematic holistic...
Boerner, T. et al CalWave Power Technologies Inc.
Sep 02, 2022
5 Resources
0 Stars
Awaiting release
5 Resources
0 Stars
Awaiting release
Holistic Control Embedded PTO Development Target Performance Metrics Definitions
Collection of Power Take-Off (PTO), Power Conversion Chain (PCC), and relevant device metrics to be used for performance assessment of the Control co-designed PTO including brief summary of literature, baseline, and target metrics values.
Boerner, T. et al CalWave Power Technologies Inc.
Jul 30, 2019
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
CalWave Holistic PTO Design Product Requirement Document
CalWave Power Technologies is currently in the process of developing the conceptual architecture for a fully upscaled Wave Energy Converter. Current and past efforts have been for smaller scaled systems, with commensurately lower forces and length scales. This document contains a ...
Kojimoto, N. et al CalWave Power Technologies Inc.
Dec 06, 2021
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
CalWave Open Water Demonstration PTO Belt Assessment & Test Report Public
PTO (Power Take-Off) belt test and analysis report conducted under CalWave's Open Water Demonstration Award EE0008097 Belt Tradeoffs for Winch PTO. The report tests two types of belts: a high modulus polyethylene (HMPE) woven fiber belt and a steel cable polyurethane belt. The goa...
Kojimoto, N. and Boerner, T. CalWave Power Technologies Inc.
May 28, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
HydroAir Power Take Off Combined Design Report
The submission is the combined design report for the HydroAir Power Take Off (PTO). CAD drawings, circuit diagrams, design report, test plan, technical specifications and data sheets are included for the Main and auxiliary control cabinets and three-phase-synchronous-motor with a ...
Pearson, G. et al Dresser-Rand Company
Jun 26, 2015
15 Resources
0 Stars
Publicly accessible
15 Resources
0 Stars
Publicly accessible
Laboratory Experiments for Highly Nonlinear WEC-Wave Conditions
This document describes the experiments carried out in December 2019 and February-March 2020 in the Directional Wave Basin at the O.H. Hinsdale Wave Research Laboratory, Oregon State University. Regular and irregular waves were generated in the absence and presence of a WEC, inclu...
Robertson, B. et al Oregon State University
Apr 30, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
TEAMER: Sandia and CalWave Torque Spring Assessment
Power-take-off (PTO) systems for wave energy converters (WEC) require restoring forces for efficient hydrodynamic as well as mechanical to electric power transfer. Implementation of an effective spring mechanism that can provide a restoring torque on e.g. a rotational, winch type ...
Boerner, T. et al CalWave Power Technologies Inc.
Apr 01, 2022
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
Design Specifications for Manufacturer for the HydroAir Power Take Off System
Includes Design Specs for Manufacturer, PTO Weight, PTO Dimensions, Turbine (Rotor and Ductwork) Design, CAD Drawings of the turbine and rotor, List of components and weights, Materials Used, Generator, List of components and weights, Structural Design, CAD drawings of the structu...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
Translated System Requirements into PTO Design Requirements (in addition to Component-level metrics) for the HydroAir Power Take Off System
Includes Maximum Cost, Critical Dimensions and Weights, Damping Curve, Rotor Speed Profile Changes, Mechanical Power for a given pressure and airflow, Turbine rpm range and power, Generator input torque, Torque speed curves/profile, Generated electrical power for given input torqu...
Natanzi, S. and Hall, R. Siemens Government Technologies, Inc.
Oct 02, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release
LandRAY PTO Testing Utilizing the NREL NWTC 5MW Dynamometer
The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; ...
Lenee-Bluhm, P. and Rhinefrank, K. Columbia Power Technologies, Inc.
Jun 13, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
LandRAY PTO Test Plans with NREL NWTC 5 MW Dynamometer
The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; ...
Prudell, J. et al Columbia Power Technologies, Inc.
Feb 29, 2016
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Direct-Drive Electrical Generator and PTO System for Flap-type Wave Energy Converters
Project and generator specifications and initial prototype test data for flap-type wave energy converters (WEC)
Englebretson, S. ABB Inc.
Mar 20, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Additional Degree of Freedom for WEC Model
'Additional Degree of Freedom for WEC' WEC-Sim numerical model from RFTS 1 (request for technical support) TEAMER project. An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO...
McCall, A. et al Dehlsen Associates, LLC
May 26, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
CalWave Open Water Demo Budget Period 1 Reports
The objective of the project is to advance the Technology Readiness Level (TRL) of the Wave Energy Converter (WEC) developed by CalWave Wave Power Technologies Inc (CalWave) through advanced numerical simulations, dynamic hardware tests, and ultimately a scaled open water demonstr...
Boerner, T. et al CalWave Power Technologies Inc.
Jun 03, 2019
8 Resources
0 Stars
Awaiting release
8 Resources
0 Stars
Awaiting release
CalWave Tank Testing Lir Deep Ocean Basin
Experimental tank testing report for CalWave's 1:20 & 1:30 scale prototype testing at the Lir National Ocean Test Facility in Ireland. Testing was completed in January 2018. Test report includes description of the scaled prototype, primary testing objectives, instrumentation and b...
Boerner, T. CalWave Power Technologies Inc.
Jan 15, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
CalWave Device Behavior in Different Sea States from Scaled Tank Testing
This submission contains a summary of tank test derived WEC device behavior in different irregular sea states.
CalWave sought to conduct experimental tank testing of scaled prototype units early on in the design process to obtain a first estimation of device performance for sea ...
Boerner, T. and Murray, B. CalWave Power Technologies Inc.
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER: Original HANNA Mono-Radial Turbine Post Access Report
Final report on a TEAMER RFTS 2 (request for technical support) study undertaken by Alden Research Laboratory for the Mono-radial turbine invented by John Clark Hanna DBA: Hanna Wave Energy Primary Drives. The study is a predictive numerical and CFD (computational fluid dynamics) ...
Hanna, J. Hanna Wave Energy Primary Drives
Mar 10, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER: xWave Real Time IMU Optimization for Advanced Controls
CalWave is developing a wave energy converter (WEC) called xWave that operates fully submerged and is classified as a type of submerged pressure differential WEC. As ocean waves pass over the submerged wave buoy, a pressure differential is created, exciting the absorber in multipl...
Spinneken, J. and Boerner, T. CalWave Power Technologies Inc.
Apr 18, 2023
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
ALFA Non-linear Ocean Waves and PTO Control Strategy
Data from Advanced Laboratory and Field Arrays (ALFA) Non-linear Ocean Waves and Power Take-Off (PTO). Control Strategy project conducted at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in 2019/2020. Contains two zip files (ALFANL.zip, ALFANL2.zip)...
Bosma, B. et al Pacific Marine Energy Center (PMEC)
Oct 28, 2019
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Wave Carpet Controls Design Optimization
To assess CalWave's submerged Wave Carpet Technology for system performance advancement,
CalWave seeks to test advanced controls methodologies on a simplified wave carpet model, which
potentially can be used in further research to leverage the design to a full wave carpet assessme...
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Aug 26, 2020
1 Resources
0 Stars
Awaiting release
1 Resources
0 Stars
Awaiting release